Явление самоиндукции это. В чем заключается явление самоиндукции?
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

32. Явление самоиндукции. Индуктивность. Явление самоиндукции это


32. Явление самоиндукции. Индуктивность.

Как было показано ранее, любое переменное магнитное создает вихревое электрическое поле. Если в некоторой цепи (Рис. 119) изменяется электрический ток, то этот ток создает изменяющееся магнитное поле  B⃗ , которое приводит к появлению вихревого электрического поля  E⃗ . Причем это поле появляется во всех точках пространства, где изменяется поле магнитное, в том числе и проводниках, образующих электрическую цепь. Таким образом, изменяющийся ток посредством переменного магнитного поля оказывает воздействие на себя самого. Явление возникновения ЭДС в цепи вследствие изменения силы тока в этой же цепи называется самоиндукцией. Это явление является частным случаем электромагнитной индукции, поэтому формула для ЭДС самоиндукции εsi остается прежней

 εsi=−ΔΦΔt ,

где Φ - магнитный поток поля, создаваемого током в контуре. В соответствии с правилом Ленца возможный индукционный ток препятствует изменению магнитного потока через контур. Поэтому ЭДС самоиндукции препятствует изменению тока в цепи. Так если ток в цепи возрастает, то возрастает и магнитный поток, поэтому направление индукционного тока противоположно исходному току. При уменьшении силы тока в цепи, ЭДС индукции поддерживает затухающий ток.

31. Генератор переменного тока

Принцип действия.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой — подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) - ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки. Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т. к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы — обычно 2...3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно "северный", и "южный" полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения f зависит от частоты вращения ротора генератора N и числа его пар полюсов р:

f=p*N/60

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть "южных" и шесть "северных" полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения я ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т. к. он оказывается включенным паралельно диоду силового выпрямителя генератора. С учетом передаточного числа i ременной передачи от двигателя к генератору частота сигнала на входе тахометра fт связана с частотой вращения коленчатого вала двигателя Nдв соотношением:

f=p*Nдв(i)/60

Конечно, в случае проскальзывания приводного ремня это соотношение немного нарушается и поэтому следует следить, чтобы ремень всегда был достаточно натянут. При р=6 , (в большинстве случаев) приведенное выше соотношение упрощается fт = Nдв (i)/10. Бортовая сеть требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор.

Обмотка статора генераторов зарубежных фирм, как и отечественных — трехфазная. Она состоит из трех частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 120 электрических градусов, как это показано на рис. I. Фазы могут соединяться в "звезду" или "треугольник". При этом различают фазные и линейные напряжения и токи. Фазные напряжения Uф действуют между концами обмоток фаз.я токи Iф протекают в этих обмотках, линейные же напряжения Uл действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи Jл. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные.

При соединении в "треугольник" фазные токи в корень из 3 раза меньше линейных, в то время как у "звезды" линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в "треугольник", значительно меньше, чем у "звезды". Поэтому в генераторах большой мощности довольно часто применяют соединение в "треугольник", т. к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у "звезды" в корень из 3 больше фазного, в то время как у "треугольника" они равны и для получения такого же выходного напряжения, при тех же частотах вращения "треугольник" требует соответствующего увеличения числа витков его фаз по сравнению со "звездой".

Более тонкий провод можно применять и при соединении типа "звезда". В этом случае обмотку выполняют из двух параллельнных обмоток, каждая из которых соединена в "звезду", т. е. получается "двойная звезда".

Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых: VD1, VD3 и VD5 соединены с выводом "+" генератора, а другие три: VD2, VD4 и VD6 с выводом "-" ("массой"). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя на диодах VD7, VD8, показанное на рис.1, пунктиром. Такая схема выпрямителя может иметь место только при соединении обмоток статора в "звезду", т. к. дополнительное плечо запитывается от "нулевой" точки "звезды".

У значительного количества типов генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю, собранному на диодах VD9—VD 11.Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении. По графику фазных напряжений (см. рис.1) можно определить, какие диоды открыты, а какие закрыты в данный момент. Фазные напряжения Uф1 действует в обмотке первой фазы, Uф2 - второй, Uф3 - третьей. Эти напряжения изменяются по кривым, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t1, когда напряжение второй фазы отсутствует, первой фазы - положительно, а третьей - отрицательно. Направление напряжений фаз соответствует стрелкам показанным на рис. 1. Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. При этом открыты диоды VD1 и VD4. Рассмотрев любые другие моменты времени легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление - от вывода "+" генераторной установки к ее выводу "—" ("массе"), т. е. в нагрузке протекает постоянный (выпрямленный) ток. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленным током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, но три из них VD2, VD4, VD6 общие с силовым выпрямителем. Так в момент времени t1 открыты диоды VD4 и VD9, через которые выпрямленный ток и поступает в обмотку возбуждения. Этот ток значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов VD9—VD11 применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25...35 А).

Остается рассмотреть принцип работы плеча выпрямителя, содержащего диоды VD7 и VD8. Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками - первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник (первой и третьей) показано на рис.2. Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном - нет. Следовательно мощность, развиваемая третьей гармоникой фазного напряжения не может быть использована потребителями. Чтобы использовать эту мощность добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5...15% при частоте вращения более 3000 мин-1.

Выпрямленное напряжение, как это показано на рис.1, носит пульсирующий характер. Эти пульсации можно использовать для диагностики выпрямителя. Если пульсации идентичны — выпрямитель работает нормально, если же картинка на экране осциллографа имеет нарушение симметрии — возможен отказ диода. Проверку эту следует производить при отключенной аккумуляторной батарее. Следует обратить внимание на то, что под термином "выпрямительный диод", не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т. е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генераторную установку элементов защиты ее от всплесков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25... 30 В. При достижении этого напряжения стабилитроны "пробиваются ", т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе "+ " генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после "пробоя "используется и в регуляторах напряжения.

studfiles.net

В чем заключается явление самоиндукции?

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м. поле, т. е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией. Самоиндукция - явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т. е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны) . В результате Л1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл. цепи ток убывает, возникает уменьшение м. потока в катушке, возникает вихревое эл. поле, направленное как ток ( стремящееся сохранить прежнюю силу тока) , т. е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает.

Вывод

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл. ток нарастает постепенно) и при размыкании цепи (эл. ток пропадает не сразу) .

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции?

Эл. ток создает собственное магнитное поле . Магнитный поток через контур пропорционален индукции магнитного поля (Ф B), индукция пропорциональна силе тока в проводнике (B I), следовательно магнитный поток пропорционален силе тока (Ф I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды ( возможен сердечник) .

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии. В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? - выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

info-4all.ru

Самоиндукция - это... Что такое Самоиндукция?

частный случай явления индукции токов (см. Индукция), а именно индукция тока в проводнике, вызываемая изменением силы тока, протекающего по этому проводнику. Это явление было замечено Фарадеем в 1834 г., три года спустя после его знаменитого открытия индукции токов. Фарадей нашел, что всякое изменение силы тока в проводнике сопровождается возникновением особой электродвижущий силы, которая стремится возбудить в этом проводнике ток, противодействующий происходящему изменению главного тока. Так, при увеличении силы тока в проводнике появляется в нем электродвижущая сила, вследствие которой происходит замедление в возрастании силы тока; при уменьшении силы тока появляется электродвижущая сила, от которой ослабление тока становится также медленнее. Такая электродвижущая сила, возникающая в проводнике при изменении силы тока в нем, называется электродвижущей силой С., а ток, возбуждаемый ею, носит название экстратока. — С. наблюдается особенно хорошо, когда в цепи тока находится катушка, и еще лучше, когда внутри этой катушки помещен железный сердечник. В последнем случае при замыкании цепи ток появляется сначала слабый, а затем только в течение некоторого промежутка времени он, непрерывно возрастая, достигает своей наибольшей силы. При размыкании цепи С. усиливает искру, являющуюся в месте разрыва цепи, и может вызвать весьма сильное физиологическое действие на организм человека или животного, когда тело человека или животного введено в цепь тока. Закон, которому подчинено явление С., тот же, какой управляет вообще явлениями индукции токов. Самоиндукция происходит вследствие того, что при изменении силы тока изменяется магнитный поток, пронизывающий контур этого тока и возбуждающийся самим этим током. Электродвижущая сила С., являющаяся в какой-либо момент времени, равна скорости изменения силы этого магнитного потока, взятой с обратным знаком и соответствующей рассматриваемому моменту времени, или иначе — она равна взятому с обратным знаком и рассчитанному на единицу времени изменению числа линий магнитной индукции, пронизывающих контур данного тока и возбуждающихся этим же током (см. Магнитизм). Обозначая чрез i силу тока, мы можем силу магнитного потока, пронизывающего контур этого тока и возбуждаемого последним, выразить чрез Li. Величина L, зависящая от формы и размеров контура тока, от свойства окружающей среды и в некоторых случаях (когда проводник приготовлен из сильно магнитного металла) от магнитных свойств проводника, носит название коэффициента С. цепи. Согласно вышеприведенному закону, электродвижущая сила С. ε выражается через

ε = d(Li)/dt. . . (1)

и в случае, когда находящиеся в цепи проводники неизменны, т. е. сохраняют свои размеры и форму, а также магнитные свойства этих проводников остаются одинаковыми при различных силах тока и окружающая среда не подвергается никакому изменению, электродвижущая сила С. вычисляется по формуле

ε = —L(di/dt). . . (2)

т. е. при данных условиях коэффициент С. имеет постоянную величину. Принимая во внимание закон Ома и формулу (2), мы получаем для силы тока i, являющегося в какой-либо цепи, которой сопротивление R и коэффициент С. L, от электродвижущей силы Е, выражение

i = [(Е — L)(di/dt)]/R. . . (3)

Отсюда при условии, что Е постоянна, т. е. что ток получается от источника, обладающего постоянной электродвижущей силой (элемент, гальваническая батарея или аккумуляторы), при помощи интегрального исчисления находим

i = (Е/R)[1 — e-(R/L)t].. . (4).

Здесь е обозначает основание Неперовых логарифмов, a t — время, протекшее от момента замыкания цепи до момента, для которого мы определяем силу i. Из формулы (4) видно, что ток достигает своей наибольшей силы Е/R только через бесконечно большое время, но на самом деле величина e—(R/L)t очень быстро становится ничтожно малой и притом тем быстрее, чем больше R и меньше L. Однако для большой величины L, как это будет в том случае, когда в цепи находится электромагнит, продолжительность установления тока может быть немалая. Она может измеряться даже минутами. Когда в цепи находится источник тока, которого электродвижущая сила изменяется гармонически n раз в единицу времени (в секунду), т. е. выражается через Е = Е0Sin2πnt, то для получающегося при этом переменного тока теория дает (см. Переменный ток) формулу

i = Е0(Sin2πnt — θ)/(√[R2 +4π2n2L2]).. . (5)

в которой tgθ = 2πnL/R. Из формулы (5) видно, что в данном случае для опроделения силы тока необходимо знать, кроме величины электродвижущей силы и сопротивления цепи, еще и коэффициент С. цепи. При таком переменном токе кажущееся сопротивление, т. е. величина √(R2 +4π2n2L2) при большой величине L может быть значительно больше R, т. е. того сопротивления, какое оказывает цепь току постоянному. Определение величины L производится в большей части случаев непосредственно путем опыта, так как теория дает возможность только для немногих проводников найти формулу для L. Так, напр., для очень длинной прямой катушки, состоящей из n оборотов, расположенных в одном слое, теоретически выводится формула

L = 4π2(n2/l)S.

В этой формуле S обозначает поперечное сечение катушки. Для длинной прямой катушки, состоящей из n оборотов, расположенных в нескольких слоях, может быть применена формула

L =n2r2/(0,01844r + 0,035l + 0,031d)

в которой r обозначает средний радиус оборотов, l — длину катушки, d — толщину обмотки ее. Для цилиндрического проводника, приготовленного из немагнитного металла и имеющего длину l, а диаметр d, коэффициент С. вычисляется по формуле

L = 2l[log(4l/d) — 0,75]

когда ток распространяется равномерно по всей массе проводника, и по формуле

L = 2l[log(4l/d) — 1]

— когда ток ограничивается только поверхностным слоем проводника. Последняя формула особенно важна в теории вибратора Гертца (см. Гертца явления). Соответственно абсолютной электромагнитной (С. G. S.) системе единиц величина L выражается в сантиметрах. Практическая единица для коэффициентов С., называемая генри или также квадрантом, равняется 109 см.

Опытное сравнение коэффициентов С. двух проводников может быть произведено по способу, аналогичному способу сравнения сопротивлений проводников при помощи мостика Витстона. Составляется цепь по схеме мостика Витстона, при чем в две соседние ветви четырехугольника этой схемы помещаются сравниваемые проводники, в две другие ветви ящики сопротивлений [Образцы сопротивлений обыкновенно принимаются неиндуктивными, т. е полагают, что коэффициенты самоиндукции их равны 0. Вообще у проволоки, сложенной вдвое, можно считать коэффициент С. равным нулю, хотя это не вполне строго.], в диагональную ветвь помещается вторичная обмотка катушки Румкорфа, а в другую диагональную ветвь, т. е. в самый мостик, вводится телефон. Изменением сопротивлений в двух ветвях четырехугольника достигают наконец того, что телефон перестает издавать звуки. В этом случае должно быть L1:L2 = R3:R4. Здесь L1 и L2 обозначают коэффициенты С. проводников, находящихся в ветвях 1 и 2, R3 и R4 — сопротивления ветвей 3 и 4. Об опытном определении абсолютной величины коэффициента С. см. в подробных курсах физики, напр. в соч. И. Боргмана "Основания учения об электрических и магнитных явлениях" (т. II).

И. Боргман.

dic.academic.ru

ЭДС самоиндукции - это... Что такое ЭДС самоиндукции?

 ЭДС самоиндукции

Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.

При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:

.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

Wikimedia Foundation. 2010.

Смотреть что такое "ЭДС самоиндукции" в других словарях:

  • эдс самоиндукции — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN self induced emfFaraday voltageinductance voltageself induction… …   Справочник технического переводчика

  • Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение… …   Википедия

  • ИНДУКТИВНОСТЬ — (от лат. inductio наведение, побуждение), величина, характеризующая магн. св ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо… …   Физическая энциклопедия

  • реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… …   Справочник технического переводчика

  • ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ — раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… …   Энциклопедия Кольера

  • электрический трансформатор — электрический машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нём двух обмоток  первичной и… …   Энциклопедический словарь

  • Импульсный стабилизатор напряжения — Импульсный стабилизатор напряжения  это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… …   Википедия

  • Катушка индуктивности — У этого термина существуют и другие значения, см. Катушка (значения). Катушка индуктивности (дроссель) на материнской плате компьютера …   Википедия

  • Индуктивность — Размерность L2MT−2I−2 Единицы измерения СИ Гн СГС …   Википедия

  • Диод — У этого термина существуют и другие значения, см. Диод (значения). Четыре диода и диодный мост. Диод (от др. греч …   Википедия

dic.academic.ru

Т. Самоиндукция — PhysBook

Индуктивность. Явление самоиндукции

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком) пропорционален модулю индукции В магнитного поля внутри контура, а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре. Следовательно, собственный магнитный поток через контур прямо пропорционален силе тока в контуре:

\(~\Phi \sim I, \qquad \Phi = LI.\)

Коэффициент пропорциональности L между силой тока I в контуре и магнитным потоком Ф, создаваемым этим током, называется индуктивностью контура. Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур. Так, индуктивность однослойного соленоида можно рассчитать по формуле \(~L=\frac {\mu\mu_0 N^2S}{l},\) где μ — магнитная проницаемость сердечника, μ0 — магнитная постоянная, N — число витков соленоида, S — площадь витка, l — длина соленоида.

Единицей индуктивности в СИ является генри (Гн). Эта единица определяется на основании формулы \(~L = \frac {\Phi}{I}.\)

Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб: 1 Гн = (1 Вб)\(1 А).''' Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле. Собственный магнитный поток, пронизывающий контур, не изменяется с течением времени, и ЭДС индукции в этом контуре не возбуждается. Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, согласно закону электромагнитной индукции, создает в контуре ЭДС. Возникновение ЭДС индукции в контуре, которое вызвано изменением магнитного поля тока, проходящего в этом же контуре, называют '''явлением самоиндукции'''. а появляющуюся ЭДС — ЭДС самоиндукции \(~\varepsilon_{si}.\) ЭДС самоиндукции создает в контуре ток самоиндукции.

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

По закону электромагнитной индукции среднее значение ЭДС самоиндукции, возникающей в контуре с индуктивностью L (индуктивность контура не изменяется),

\(~\mathcal h \varepsilon_{si}\mathcal i = -\frac {\Delta \Phi}{\Delta t} = -L \frac {\Delta I}{\Delta t}.\) Мгновенное значение ЭДС \(~\varepsilon_{si} = -LI'(t).\)

ЭДС самоиндукции прямо пропорциональна индуктивности контура и скорости изменения силы тока в контуре.

Из этой формулы следует, что индуктивность — физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Используя это выражение, можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 А за 1 с в нем возникает ЭДС самоиндукции 1 В.

Изменить магнитный поток можно также путем изменения индуктивности контура.

В общем случае может изменяться как сила тока в контуре, так и его индуктивность. Тогда среднее значение ЭДС самоиндукции

\(~\mathcal h \varepsilon_{si}\mathcal i = -\frac {\Delta (LI)}{\Delta t}= -(L\frac {\Delta I}{\Delta t} + I\frac {\Delta L}{\Delta t}),\)

a ее мгновенное значение \(~\varepsilon_{si} =-(LI)' = -(LI'(t) + IL'(t)).\)

Примерами самоиндукции являются экстратоки замыкания и размыкания.

Собирают электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока (рис. 1). Резистор должен иметь такое же электрическое сопротивление, как и катушка. Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором.

Рис. 1

Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке. При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке. На рисунке 2 изображены графики изменения тока через лампочку 1 при замыкании (а) и размыкании (б) цепи. Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются масляными выключателями. В линиях электропередачи предусматриваются специальные автоматические выключатели, размещенные в отдельных зданиях и снабженные искрогасительными устройствами.

Рис. 2

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 351-353.

www.physbook.ru