Сила тока на участке цепи. От каких величин зависит сила тока на участке электрической цепи. Исследовательская работа учеников в 8-м классе
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Электрический ток. Работа и мощность в цепи постоянного тока. Закон Ома для полной цепи. Сила тока на участке цепи


Почему сила тока в различных участках цепи одинакова? Пожалуйста поподробней

ну потомучто ты пятиклассник

Сила тока, при равном напряжении, обратно пропорциональна сопротивлению участка цепи

<a rel="nofollow" href="/" title="4954176:##:page.php?id=64" target="_blank" >[ссылка заблокирована по решению администрации проекта]</a> <a rel="nofollow" href="http://www.edu.yar.ru/russian/projects/socnav/prep/phis001/dircurrent.html" target="_blank">http://www.edu.yar.ru/russian/projects/socnav/prep/phis001/dircurrent.html</a> <a rel="nofollow" href="http://phdep.ifmo.ru/electr/30_lekzia_3.htm" target="_blank">http://phdep.ifmo.ru/electr/30_lekzia_3.htm</a>

Потому что сила тока характеризует количество электронов, проходящих по проводнику. Если на одном конце провода проходит, скажем, миллион электронов в секунду, тогда на другом конце также пройдет миллион. А если иначе - куда они тогда деваются? Исчезнуть они могут лишь при столкновении и последующей аннигиляции с позитроном. Но в веществе позитронов нет. А улететь куда-то в потустороннее пространство, ясно, не могут. Однако, если провод раздваивается на два, тогда поток электронов в каждом маленьком проводке будет меньше, но в сумме эти отдельные потоки будут равны потоку в большом проводе.

Потому что существует такой закон: называется закон сохранения заряда и выражается этот закон зависимостью I=q/t при линейности функции заряда q, А этот заряд распределён равномерно в отсутствии внешнего неоднородного поля, поэтому изменение заряда dq везде одинаково и время течёт везде одинаково и ток везде одинаков.

потому что сила тока - заряд проходящий через сечение проводника за единицу времени. если не ошибаюсь, 1А=1Кл/с (хоть и не уверен) . а так как через всю цепь проходит один и тот же заряд (и за одно и то-же время) получаем ответ на вопрос. кстати, это так только для последовательной цепи, на параллельных учасках сила тока падает (так как делится на несколько проводников) но в сумме по параллельным проводникам соответствует силе тока в остальной цепи

Представь, что ток - это расход воды в ручейке. По какому бы руслу ручеек не бежал, расход воды всегда один и тот же будет. Если ручеек на два или больше русла раздвоится - расход будет равен сумме расходов по руслам.

touch.otvet.mail.ru

чему равен общий ток цепи и напряжение на участке при последовательном соединение???

Общее сопротивление при последовательном соединении равно сумме сопротивлений Rсумм=R1+R2+R3... Ток через все сопротивления протекает один ( I ). Поэтому ток вычисляешь как Отношение напряжения источника U к Rсумм. I=U/Rсумм Мощность P=U*I или P=I*I*R (так как U=I*R). тогда, P1=I*I*R1 P2=I*I*R2 P3=I*I*R3

исходные данные где?

1) сумма 2)напряжение на участке цепи умножить на ток. При том ток, при последовательном соединении одиноковй в любой точке цепи

Сумма токов в узле равна нулю. Выход равен входу. 1) сложить. 2)сумме мощностей элементов цепи.

При последовательном соединении узлов нет. Ток цепи определяется делением приложенного напряжения в вольтах (V) на сопротивление цепи в омах (R). I=V : R. Падение напряжения на участке будет равнятся сопротивлению участка помноженному на ток. Общее сопротивление равно сумме всех сопротивлений. Мощность участка равняется падению напряжения на участке помноженному на ток. Это Закон Ома. А вообще-то это все в школьном учебнике физики в разделе-Электричество.

touch.otvet.mail.ru

Электрический ток.Работа, мощность | От урока до экзамена

Кристаллическая решётка

Электрический ток.        Все металлы являются проводниками электрического тока. Они состоят из пространственной кристаллической решетки, узлы которой совпадают с центрами положительных ионов. Вокруг ионов хаотически движутся свободные электроны.

В металлах электронная проводимость

Электрическим током в металлах называется упорядоченное движение свободных электронов. За направление тока принимают направление движения положительно заряженных частиц.

Электрические заряды могут двигаться упорядоченно под действием электрического поля, поэтому условием для существования эл. тока является наличие электрического поля и свободных носителей эл.заряда.

     Сила тока численно равна заряду, протекающему через данное поперечное сечение проводника в единицу времени.   Ток называется постоянным, если сила тока и его направление не изменяется с течением времени.

I = 1 Кл/с = 1 А

1 ампер (А) равен силе постоянного тока, при котором через любое поперечное сечение проводника за 1 с протекает 1 Кл электричества.                 I = q0 nvS                                             Силу тока в цепи измеряют амперметром.  Условное обозначение в цепи

Работа и мощность тока.      Электрический ток снабжает нас энергией. Она возникает за счёт работы электрического поля по передвижению свободных зарядов в проводнике. Рассмотрим участок цепи, по которому течёт ток I. Напряжение на участке обозначим U, сопротивление участка равно R. При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном участке совершает работу.  ΔA  = U I Δt  — эту работу называют работой электрического тока. За счёт работы на рассматриваемом участке может совершаться механическая работа; могут также протекать химические реакции. Если этого нет, то работа эл.поля приводит только к нагреванию проводника. Работа тока равна количеству теплоты, выделяемому проводником с током:  — закон Джоуля — Ленца  

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена на данном участке:    P = IU  или                .  Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Закон Ома для замкнутой цепи.          Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению заряда q вдоль цепи, к значению этого заряда  (1В=1Дж/1Кл). Рассмотрим теперь замкнутую (полную) цепь постоянного тока, состоящую из источника с электродвижущей силой  и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R.  (R+r) — полное сопротивление цепи.  Закон Ома для полной цепи записывается в виде   или 

Сила тока в электрической цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи.

 

kaplio.ru

От каких величин зависит сила тока на участке электрической цепи. Исследовательская работа учеников в 8-м классе

Разделы: Физика

При изучении электрических явлений в 8 классе, переходя от темы “Электризация тел” к теме “Постоянный электрический ток”, необходимо продолжать сообщать исторические сведения о развитии науки в этой области. Из предыдущих уроков ученики уже знают, что первую электрическую машину в 1650 г построил немецкий ученый Отто Герике [7].

На уроке “Источники электрического тока”, рассказываю, что прообразом электростатической машины, является электрофор Александро Вольтf [9]. Электростатическую машину изобрел Уимшерстон в 1870 г [7].

В 1790 г Луиджи Гальвани (1737 – 1798 г), известный итальянский физиолог, исследуя препарированную мышцу лягушачьей лапки, заметил, что она сокращается, если к ней прикоснуться одновременно двумя предметами, сделанными из разных металлов. Почему так происходит, объяснил другой замечательный итальянский ученый – Александро Вольта (1745 – 1827 г). Он доказал, что две пластинки из разнородных металлов в растворе соли (в данном случае его роль играла кровь) рождают электричество. [8], [9].

В 1799 г Вольта создал первый искусственный источник электрического тока. Он представлял собой медные и цинковые кружки с суконными прокладками между ними. Прокладки были пропитаны слабым раствором кислоты. Свое изобретение Вольта назвал в честь Л. Гальвани – гальваническим элементом. Чтобы получить более или менее приличную электрическую мощность, элементы приходилось последовательно соединять в батареи (их именовали “вольтовыми столбами”). В дальнейшем гальванические элементы Вольта были усовершенствованы, и появились всем знакомые батарейки. Сам Вольта не знал ничего о химических превращениях, которые вызывает его столб в жидкости. Велика его заслуга в том, что он создал первый в мире источник постоянного электрического тока и обратил внимание на условие существования тока, и что цепь должна быть замкнута. [7].

Немецкий физик Томас Зеебек (1770-1831) в 1821 г открыл явление термоэлектричества (в паре “медь – висмут”), построил термопару.

(Данный рассказ, конечно же, сопровождаю показом опытов по учебнику [4] и проводим фронтальный эксперимент [2]: цинковый и угольный электроды опускаем в стакан с раствором соли, к зажимам через ключ подсоединяем лампу, наблюдаем её свечение).

На уроке “Действие электрического тока” также использую исторические сведения об изучении химического действия – 1800 г англичане Никольсон и Карлейль разложили воду с помощью электрического тока на водород и кислород; тепловое и световое действие изучал Василий Владимирович Петров; магнитное действие обнаружил Эрстед в 1819 г. [5]. При возможности проводим фронтальный эксперимент по наблюдению действий электрического тока [2]. Демонстрационный эксперимент по учебнику [4] обязателен.

На уроке знакомства с амперметром, рассказываю, что Вольта для оценки силы тока использовал свой собственный язык, т.к. при возникновении тока на языке появлялся кислый привкус, а чем больше ток, тем сильнее вкусовые ощущения, а немецкий ученый Георг Ом в 1826 г. определил силу тока по действию тока на магнитную стрелку, подвешенную на нити над проволокой, идущей от источника тока [1], [6], об этом подробнее будет рассказано на следующем уроке.

После урока, на котором объясняю понятие электрического напряжения, знакомлю с вольтметром; провожу уроки в такой последовательности:

а) “Электрическое сопротивление проводников. Единицы сопротивления”. Лабораторная работа “Измерение напряжения на различных участках цепи”

б) “От чего зависит сопротивление проводников”.

Рассказ ученика. Годы жизни Георга Симона Ома — 1787—1854. Отец Ома, слесарь в Эрлангене, сумел передать своим детям трудовые традиции фамилии Омов, потомственных вестфальских кузнецов. Барельеф на постаменте памятника Ому в Мюнхене символически изображает вручение отцом своему сыну орудий своей наследственной профессии. Насколько понимал отец Ома роль образования, видно из того знаменательного факта, что он счел необходимым изучить высшую математику, чтобы следить за учением своих сыновей: старшего, Мартина — впоследствии известного математика — и младшего, Георга — физика, установившего основной закон электрического тока.

Георг Ом окончил университет в родном городе и стал учителем математики. Начиная свою трудовую деятельность, жил в большой бедности и переезжал из одного города в другой, пока наконец не обосновался в иезуитской коллегии в Кельне в качестве учителя математики и физики. За девять лет учительства в Кельне произошло превращение Ома из математика в физика. Здесь проведены им многочисленные эксперименты, здесь сложились его основные воззрения на закономерности электрического тока.

С 1825 г. Ом начинает заниматься исследованиями гальванизма. Георг Ом, начавший свои работы в 1825 г., был в очень сложных условиях. Всего четверть века назад был открыт источник постоянного тока – “вольтов столб”, только что в качестве источника начала использоваться термопара. Что такое электрический ток, еще никто сказать не мог, считалось просто, что это нечто, порождаемое источником. Неизвестную причину тока называли электродвижущей силой. Не существовало чётких понятий “сила тока” и “сопротивление” - их в расплывчатой форме ввел сам Ом. Не было хороших приборов, оценивающих силу тока.

Я рассказываю ребятам о собственноручно изготовленным им вольтовом столбе и гальваноскопе, проецируя кодограмму.

Зачитываю из работы Г. Ома “Определение закона проводимости контактного электричества металлами…”: “Я брал куски цилиндрической проволоки произвольной длины из различных материалов и помещал их поочередно в цепь. Когда я ставил эти опыты, я повторял каждый из них несколько раз в измененных условиях и получал постоянно те же результаты с очень небольшими отклонениями”. Так Ом выяснил, как различные проводники влияют на силу тока в цепи. Попробуем и мы определить, как размеры проводников влияют на ток в цепи.

Проводим фронтальную лабораторную работу [2] стр. 95, в которой ребята сравнивают длины проводов спиралей сопротивлением 1 и 2 Ом, подсчитав число их витков, полагая, что обе спирали изготовлены из одного и того же материала; предполагают, какая спираль обладает большим сопротивлением. Затем собирают электрическую цепь из источника тока, ключа, лампочки и поочередно включают в цепь то одну, то другую спираль. Делают вывод: т.к. накал лампочки больше, когда подключена спираль с меньшим числом витков, то она обладает меньшим сопротивлением, из этого следует, сопротивление спирали зависит от её длины: чем меньше длина, тем меньше сопротивление.

Затем ученики сравнивают длины проводов, из которых сделаны спирали сопротивлением 2 и 4 Ома. Оценивают сечение проводов. Предполагают, какой провод обладает большим сопротивлением, включают его в электрическую цепь с лампочкой и по яркости свечения лампочки делают вывод, что чем меньше сечение, тем больше сопротивление.

в) “Знакомство с устройством реостата и потенциометра, их применение”. Из предыдущего урока следует, что, создав прибор, которым можно менять длину провода, включаемого в цепь, можно будет изменять силу тока в цепи, изучаем устройство реостата.

Знакомство с потенциометром. Так как в нашей школе с обычным старым лабораторным оборудованием, имеется и радиоэлектронный набор Головина П. П., то дальнейшие работы мы проводим, используя этот набор.

Рассказываю, что переменные сопротивления (резисторы), могут иметь три вывода, один из которых связан с подвижным контактом, скользящим по поверхности проводящего слоя. Сопротивление между любым крайним выводом переменного резистора и подвижным контактом зависит от положения движка. Схематическое изображение:

Ученики проводят работу 6-3-1 [3], стр. 43,

а затем 6-3-2 [3],

и выясняют, что при любом положении движка резистора соблюдается равенство: напряжение участка 1-3 равно сумме напряжений участка 1-2 и участка 2-3. Ранее на уроках они выяснили, что чем больше сопротивление участка, тем больше напряжение на нем. Следовательно, потенциометром можно регулировать напряжение.

г) “Закон Ома для участка цепи” (2 урока).

1 урок. “Зависимость силы тока от напряжения”. (Исследовательская работа учеников)

Рассказ о новой установке Ома (кодограмма) “Рис. 5” Ом стал применять установку с термоэлементом.

Он составил термоэлемент из согнутых под прямыми углами висмутовой и медной полосок, концы которых скреплялись винтами. Один конец термоэлемента окружался кипящей водой, другой обкладывался тающим льдом. От полюсов шли проволоки, опускавшиеся в чашечки с ртутью. Цепь замыкалась проволоками разной длины, присоединявшимися к тем же чашечкам. Сила тока определялась действием тока на магнитную стрелку, подвешенную на нити над проволокой, идущей от термоэлемента. Закручивая нить в сторону, противоположную отклоняющему действию тока, удавалось вернуть её в первоначальное положение, в плоскость магнитного меридиана. [6]. Выводы, которые сделал Ом из своих опытов, мы узнаем позже, когда вы проделаете аналогичные опыты, используя современное оборудование. Какие основные элементы были в установке Ома и соответственно нужны будут нам для эксперимента? Из беседы выясняем: термоэлемент заменим на источник тока на 4,5 В. Ом изменял напряжение, создавал различные разности температур на концах термоэлемента, мы воспользуемся потенциометром. Ом силу тока определял по закручиванию нити, мы воспользуемся миллиамперметром. Половина класса будет использовать проводник Х1(10 Ом), остальные проводник Х3 (30 Ом). Собираем электрическую цепь по схеме,

чертим таблицу,

проводим измерения, меняя напряжение. Кто первый выполнил, идет к доске строить график зависимости силы тока от напряжения.

Из графиков делаем вывод:

1) Во сколько раз увеличивают напряжение, во столько раз увеличивается сила тока;

2) наклон графиков разный.

Вычислите отношение напряжения к силе тока для каждого опыта. Выясняется, что в первом случае оно постоянно и равно 10, а во втором – постоянно и равно 30. Эта постоянная величина характеризует свойство проводника, раз она не изменяется в опытах. Вместо Х2 в электрической цепи, схема которой на “рис. 4”, подсоединим лампочку. В какой цепи она ярче горит, где Х1 или Х3? – где Х1. Там где лампа горит ярче, сопротивление меньше (ученики это уже знают), значит Х1 и Х3 – сопротивление данных проводников.

Из урока делаем вывод: 1. Сила тока в участке цепи прямо пропорциональна напряжению на этом участке. 2. Отношение напряжения на участке цепи к силе тока есть величина постоянная для этого участка и определяет его сопротивление. “Рис. 9”. Решаем качественные, количественные и графические задачи.

Задача. Проверим соотношение а)

на опыте. На демонстрационным столе собрана электрическая цепь, состоящая из демонстрационных амперметра и вольтметра, источника тока ВС-6, ключа, потенциометра, магазина сопротивлений на 10 Ом.

1) Из каких приборов она состоит и для какой цели каждый из них служит?

2) Как проверить при помощи этой электрической цепи, что соотношение а) верно?

Будем при R = const (например R = 2 Ом), менять U (значение определяем по шкале вольтметра). Прогнозируем, как будет меняться сила тока при увеличении напряжения в 1,5; 2; 3 раза. Предположения сверяем с показаниями амперметра, шкала которого в начале каждого опыта закрыта. Еще раз убеждаемся, что а). Каждый раз проверяем, действительно ли отношение напряжения к силе тока остается постоянной и в нашем опыте равно 2 м. Решаем задачи № 1277, № 1268 [10].

2 урок. “Зависимость силы тока от сопротивления” (Исследовательская работа учеников)

Выясняем с учениками, что теперь необходимо напряжение оставлять неизменным, чтобы вывести зависимость силы тока от сопротивления. Собираем электрическую цепь по схеме “Рис. 6”, чертим таблицу.

Половина класса потенциометром поддерживает напряжение 3 В, остальные – 2 В. Ученики, первыми выполнявшие экспериментальную работу, на доске чертят зависимость силы тока от сопротивление.

Из графиков по результатам опыта делаем вывод: сила тока уменьшается с увеличением сопротивления. Зависимость полученная на графиках называется обратно пропорциональной. Делаем вывод: Сила тока в участке цепи обратно пропорциональна сопротивлению этого участка.

Учитывая формулы “рис. 9” приходим к выводу “рис. 12”: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Это и есть тот закон, который установил экспериментально, а затем вывел теоретически Георг Ом в 1827 г, а следом за ним и мы с вами.

 “Да будут святы те, кто в творческом пылу, исследуя весь мир, открыли в нем законы”.

Э. Верхарн.

Решение качественных, количественных и графических задач.

Задача № 1. Проверим соотношение “рис. 12.а” на опыте. На демонстрационном столе собрана электрическая цепь (состоит из тех же приборов, что на предыдущем уроке). При помощи какого прибора можно поддерживать напряжение на вольтметре постоянным? (Потенциометра, который подключаем параллельно источнику и делит напряжение) Будем поддерживать U = 2 B, менять сопротивление участка и прогнозировать, как при этом будет меняться сила тока. Предположения сверяем с показаниями амперметра, ещё раз убеждаемся, что “рис. 12.а”. Решаем задачи № 1275, №1278, №1281, № 1283. [10]

Список литературы.

1. Блудов М. И. Беседы по физике. Москва. “Просвещение”, 1973 г.

2. Буров В. А., … Фронтальные экспериментальные задания по физике в 6-7 классах средней школы. Москва, “Просвещение”, 1981 г.

3. Головин. П. П. Учимся радиоэлектронике. Ульяновск. РИЦ “Реклама” 1999 г.

4. Перышкин А. В. Физика 8. Москва. “Дрофа”. 2000 г.

5. Спасский Б. И.. История физики. Москва. “Высшая школа”. 1977 г.

6. Хрестоматия по физике. Москва “Просвещение”. 1982 г.

7. Шабловский В. Занимательная физика. Серия “Нескучный учебник”. Тригон. Санкт-Петербург, 1997 г.

8. Энциклопедия для детей Аванта +. Техника Том 14. “Издательский центр “Аванта+”, 1999 г.

9. Энциклопедия для детей Аванта +. Физика Том 16. “Издательский центр “Аванта+”, 2001 г.

10. Лукашин В. И., Иванова Е. В. “Сборник задач по физике 7 – 9”. Москва. Просвещение 2001 г.

xn--i1abbnckbmcl9fb.xn--p1ai

Какая физическая величина определяется отношением напряжения на участке электрической цепи к силе тока?

сопротивление, единица измерения - Ом

Сопротивление.

закон ома!!!! конечно же сопротитвление

R (сопротивление) = U (напряжение) /J (сила тока) Естественно сопротивление)

можно полный ответ?

touch.otvet.mail.ru

Объясните почему при последовательном соединении проводников сила тока в любом участке цепи одинакова.

сам же и ответил почти. прикинь тебе надо сделать водопровод на дачу. цельной трубы нет только куски РАЗНОГО диаметра так вот воды будет бежать по ВСЕЙ ДЛИНЕ столько сколько пропустит самый тонкий .кусок водопровода.

потому, что ток - это количество электронов, прошедшее за секунду. Это как труда, по которой текут электроны, они не рождаются по дороге и не умирают, сколько прошло через один конец - столько же вытечет с другого.

тонкий шланг соединили с толстым, по ним течет вода, на выходе из шланга ведро, оно набирается за минуту, так вот, через любое сечение шланга хоть в тонком хоть в толстом шланге течет все то же ведро в минуту. не больше и не меньше. так и с током, это заряд проходящий через сечение проводника.

В силу закона сохранения электрического заряда. «грубо говоря после них скорость движения электронов в проводнике стала меньше». Это совершенно не верно. Скорость дрейфа электронов в проводнике пропорциональна напряжённости электрического поля в проводнике. В проводе постоянного сечения скорость электронов по всей длине провода одинакова.

Сила тока одинакова на любом участке неразветвленной цепи, то есть через любое сечение проводника в единицу времени проходит одинаковое количество заряда. При прохождении тока через участок с большим сопротивлением увеличивается напряжение на этом участке. Сколько воды втекает в трубу, столько же из нее вытекает. Т. е через любое сечение трубы проходит одинаковое количество воды. (труба нигде не разветвляется). При прохождении воды через большее сечение возрастает давление на этом участке трубы.

touch.otvet.mail.ru

Постоянный электрический ток

 на главную   

 

Официальный сайт АНО ДО Центра "Логос", г.Глазов

http://logos-glz.ucoz.net/

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного о физике:   

 

Что называют электрическим током?

 

Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока,  S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A - полная работа сторонних и кулоновских сил,  q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая  электрические свойства участка цепи.

где ρ - удельное сопротивление проводника, l - длина участка проводника,  S - площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G - проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке,  R - сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1- φ2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи,  r - электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

 

Последовательное и параллельное

соединение проводников.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

    

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение - комбинация  параллельного и последовательного  соединений.

 

 

Правила Кирхгофа.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел - точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n - число проводников, сходящихся в узле, Ii- сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла - отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

 

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают  токи противоположного направления. ЭДС источников  электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае - отрицательными.

 

Порядок расчета сложной цепи постоянного тока.

  1. Произвольно выбирают направление токов во всех участках цепи.

  2. Первое правило Кирхгофа  записывают  для  (m-1)  узла, где m - число узлов в цепи.

  3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

  4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт - сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если  амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление - сопротивление, подключаемое последовательно с вольтметром (гальванометром),  для расширения его шкалы при измерении напряжения.

Если  вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

 

nika-fizika.narod.ru