Ппю схема. 6. Практические принципиальные схемы для дома
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Подборка простых и эффективных схем. Ппю схема


Схемы езд (выездка) | FEI, FKSR

Кубок Вызова Кубок Вызова FEI - Усложненный тест (2010 г.) Скачать
Кубок Вызова Кубок Вызова FEI - Средний тест (2010 г.) Cкачать
Кубок Вызова Кубок Вызова FEI - Предварительный тест (2010 г.) Скачать
Кубок Вызова Кубок Вызова FEI - Элементарный тест (2010 г.) Скачать
Взрослые Большой Приз (2009 г) Скачать
Взрослые КЮР Большого Приза (2009 г) Скачать
Взрослые Переездка Большого Приза (Олимпийский тест, 2011 г.) Скачать
Взрослые Малый приз Скачать
Взрослые Личный приз (Региональные Игры) (2009 г.) Скачать
Взрослые Средний Приз №1 (2009 г.) Скачать
Взрослые Большой Приз (2009 г., ред. 2014) - NEW - после 1 января 2014 года!!! Скачать
Взрослые Переездка Большого Приза (2009 г., ред. 2014) - NEW - после 1 января 2014 года!!! Скачать
Взрослые Средний Приз №2 (2009 г., ред. 2014) - NEW - после 1 января 2014 года!!! Скачать
Взрослые Средний Приз А (2014 г.) - NEW - после 1 января 2014 года!!! Скачать
Взрослые Средний Приз В (2014 г.) - NEW - после 1 января 2014 года!!! Скачать
Взрослые КЮР Среднего приза №1 (2009 г) Скачать
Взрослые Предварительный приз (Региональные Игры) (2009 г.) Скачать
Взрослые Командный приз (Региональные Игры) (2009 г.) Скачать
Юноши Личный приз (юноши) (2009 г.) Скачать
Юноши Командный приз (юноши) (2009 г.) Скачать
Юноши Предварительный приз (юноши) (2009 г.) Скачать
Юноши КЮР Юношеских езд (2009 г.) Скачать
Юниоры Предварительный приз (юниоры) (2009 г.) Скачать
Юниоры Личный приз (юниоры) (2009 г.) Скачать
Юниоры Большой приз (юниоры, 16-25 лет) (2009 г.) Скачать
Юниоры Командный (Малый) приз (юниоры) (2009 г.) Скачать
Юниоры КЮР (Уровень юниорских езда) (2009 г.) Скачать
Дети Командный приз - дети (2009 г.) Скачать
Дети Предварительный приз (дети на пони) (2012 г.) Скачать
Дети Предварительный приз - дети (2009 г.) Скачать
Дети Личный приз - дети (2009 г) Скачать
Дети Личный приз (дети на пони) (2012 г.) Скачать
Дети Командный приз (дети на пони) (2012 г.) Скачать
Молодые Предварительная езда для лошадей 5-ти лет FEI (2009 г.) Скачать
Молодые Предварительная езда для лошадей 6-ти лет FEI (2009 г.) Скачать
Молодые Езда для лошадей 5-ти лет - финал FEI (2009 г.) Скачать
Молодые Езда для лошадей 6-ти лет - финал FEI (2009 г.) Скачать
Молодые Езда для лошадей 4-х лет FEI (2009 г.) Скачать
Молодые Тест для лошадей 4-х лет Скачать
Молодые Тест для лошадей 5-ти лет. Предварительный Скачать
Молодые Тест для лошадей 5-ти лет. Финальный Скачать

end15.ru

Правила по выездке, схемы езд, новые схемы езд с 2015 г.

26.11.2014

Обращаем внимание, что с 1 января 2015 г. вышли новые редакции езд!!!!

 

Правила FEI по выездке, 24-е издание (изм. с 2105 г.)

Регламент участия российских граждан в международных соревнованиях, проводимых в России и за рубежом

Регламент участия в официальных соревнованиях по конному спорту Всероссийского уровня, квалификационных к ним и соревнованиях уровня Федеральных округов

 

Схемы езд FEI - дети.

 

Предварительный Приз A NEW с 2015 г.

Предварительный Приз В NEW с 2015 г.

Командный приз NEW с 2015 г.

Личный приз  NEW с 2015 г.КЮР (детские езды) 2009 г.

 

Схемы езд FEI - юноши.

Предварительный приз NEW  с 2015 г.Командный приз NEW с 2015 г.Личный приз NEW  с 2015 г.КЮР

 

 

Схемы езд FEI - юниоры.

 

Предварительный приз NEW  с 2015 г.

Малый приз NEW с 2015 г.

Личный приз NEW  с 2015 г.

Большой приз (16-25 лет) NEW  с 2015 г.

 

Схемы езд FEI - взрослые.

 

Малый приз NEW с 2015 г.Средний приз А NEW с 2105 г.КЮР Среднего Приза №1 

Средний приз №1 NEW  с 2015 г.Средний приз №2 NEW  с 2015 г.Большой приз NEW  с 2015 г.Переездка Большого Приза NEW c 2015 г.КЮР Большого Приза

Минимальный возраст лошадей для участия в: Малых Ездах - шесть лет (национальные турниры), семь лет (международные турниры) Больших Ездах - семь лет (национальные турниры), восемь лет (международные турниры).

 

Схемы езд FEI - молодые лошади.

Езда для 4 -х летних лошадей. Предварительный приз (5 лет) Предварительный приз (6 лет) Командный Приз (5 лет) Командный Приз (6 лет)

Схемы езд. Лошади 4х лет. Второй уровень

Схемы езд. Лошади 5 лет

Схемы езд. Лошади 4х лет. Первый уровень

 

Схемы езд FEI дети - пони.

 

Предварительный приз (дети на пони) NEW с 2015 г.

Командный приз (дети на пони) NEW  с 2015 г.

Личный приз (дети на пони) NEW  с 2015 г.

 

Схемы ФКСР - Любители.

Любительская езда №1

Любительская езда №2

Любители 1-ый уровень

Любители 2-й уровень

Любители 3-й уровень

 

 

 

← предыдущая новость   архив новостей   следующая новость →

xn----7sbmndbqyw3b1b6b.xn--p1ai

6. Практические принципиальные схемы для дома

ОБЗОР СХЕМ ВОССТАНОВЛЕНИЯ ЗАРЯДА У БАТАРЕЕК

Проблема повторного использования гальванических элементов питания давно волнует любителей электроники. В технической литературе неоднократно публиковались различные методы "оживления" элементов, но, как правило, они помогали только один раз, да и ожидаемой емкости не давали.

В результате экспериментов удалось определить оптимальные токовые режимы регенерации и разработать зарядные устройства, пригодные для большинства элементов. При этом они обретали первоначальную емкость, а иногда и несколько превосходящую ее.

Восстанавливать нужно элементы, а не батареи из них, поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи.

Что касается процесса зарядки, то она должна проводиться асимметричным током с напряжением 2,4...2,45 В. При меньшем напряжении регенерация весьма затягивается и элементы после 8...10 часов не набирают и половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.

Перед началом зарядки элемента необходимо провести его диагностику, смысл которой состоит в определении способности элемента выдерживать определенную нагрузку. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1 В. (Элемент с меньшим напряжением непригоден к регенерации.) Затем нагружают элемент на 1...2 секунды резистором 10 Ом, и, если напряжение элемента упадет не более чем на 0,2 В, он пригоден к регенерации.

Электрическая схема зарядного устройства, приведенная на рис. 5.23 (предложил Б. И. Богомолов), рассчитана на зарядку одновременно шести элементов (G1...G6 типа 373, 316, 332, 343 и других аналогичных им).

Рис. 5.23

Самой ответственной деталью схемы является трансформатор Т1, так как напряжение во вторичной обмотке у него должно быть строго в пределах 2,4...2,45 В независимо от количества подключенных к нему в качестве нагрузки регенерируемых элементов.

Если готового трансформатора с таким выходным напряжением найти не удастся, то можно приспособить уже имеющийся трансформатор мощностью не менее 3 Вт, намотав на нем дополнительно вторичную обмотку на нужное напряжение проводом марки ПЭЛ или ПЭВ диаметром 0,8.,.1,2 мм. Соединительные провода между трансформатором и зарядными цепями должны быть возможно большего сечения.

Продолжительность регенерации 4...5, а иногда и 8 часов. Периодически тот или иной элемент надо вынимать из блока и проверять его по методике, приведенной выше для диагностики элементов, а можно следить с помощью вольтметра за напряжением на заряжаемых элементах и, как только оно достигнет 1,8...1,9 В, регенерацию прекратить, иначе элемент может перезарядиться и выйти из строя. Аналогично поступают в случае нагрева какого-либо элемента.

Лучше всего восстанавливаются элементы, работающие в детских игрушках, если ставить их на регенерацию сразу же после разряда. Причем такие элементы, особенно с цинковыми стаканами, допускают многоразовую регенерацию. Несколько хуже ведут себя современные элементы в металлическом корпусе.

В любом случае, главное для регенерации не допускать глубокого разряда элемента и вовремя ставить его на подзарядку, так что не спешите выбрасывать отработанные гальванические элементы.

Вторая схема (рис. 5.24) использует тот же принцип подзарядки элементов пульсирующим ассимметричным электрическим током. Она предложена С. Глазовым и проще в изготовлении, так как позволяет использовать любой трансформатор с обмоткой, имеющей напряжение 6,3 В. Лампа накаливания HL1 (6,3 В; 0,22 А) выполняет не только сигнальные функции, но и ограничивает зарядный ток элемента, а также предохраняет трансформатор в случае коротких замыканий в цепи зарядки.

Рис. 5.24

Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов - двух кремниевых и одного германиевого - с допустимым током не менее 100 мА. Диоды VD2 и VD3 — любые кремниевые с тем же допустимым средним током, например КД102А, КД212А.

Емкость конденсатора С1 — от 3 до 5 мкФ на рабочее напряжение не менее 16В. Цепь из переключателя SA1 и контрольных гнезд Х1, Х2 для подключения вольтметра. Резистор R1 — 10 Ом и кнопка SB1 служат для диагностики элемента G1 и контроля его состояния до и после регенерации.

Нормальному состоянию соответствует напряжение не менее 1,4 В и его уменьшение при подключении нагрузки не более чем на 0,2 В.

О степени заряженности элемента можно также судить по яркости свечения лампы HL1. До подключения элемента она светится примерно в полнакала. При подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла зарядки подключение и отключение элемента почти не вызывает изменения яркости.

При подзарядке элементов типа СЦ-30, СЦ-21 и других (для наручных часов) необходимо последовательно с элементом включать резистор на 300...500 Ом. Элементы батареи типа 336 и других заряжаются поочередно. Для доступа к каждому из них нужно вскрыть картонное донышко батареи.

Рис. 5.25

Если требуется восстановить заряд только у элементов питания серии СЦ, схему для регенерации можно упростить, исключив трансформатор (рис. 5.25).

Работает схема аналогично вышеприведенным. Зарядный ток (1зар) элемента G1 протекает через элементы VD1, R1 в момент положительной полуволны сетевого напряжения. Величина Iзар зависит от величины R1. В момент отрицательной полуволны диод VD1 закрыт и разряд идет по цепи VD2, R2. Соотношение Iзар и Iразр выбрано 10:1. У каждого типа элемента серии СЦ своя емкость, но известно, что величина зарядного тока должна составлять примерно десятую часть от электрической емкости элемента питания. Например, для СЦ-21 — емкость 38 мА-ч (Iзар=3,8 мА, Iразр=0,38 мА), для СЦ-59 — емкость 30 мА-ч (Iзар=3 мА, Iразр=0,3 мА). На схеме указаны номиналы резисторов для регенерации элементов СЦ-59 и СЦ-21, а для других типов их легко определить, воспользовавшись соотношениями: R1=220/2·lзap, R2=0,1·R1.

Установленный в схеме стабилитрон VD3 в работе зарядного устройства участия не принимает, но выполняет функцию защитного устройства от поражения электрическим током — при отключенном элементе G1 на контактах Х2, ХЗ напряжение не сможет возрасти больше, чем уровень стабилизации. Стабилитрон КС175 подойдет с любой последней буквой в обозначении или же может быть заменен двумя стабилитронами типа Д814А, включенными последовательно навстречу друг другу ("плюс" к "плюсу"). В качестве диодов VD1, VD2 подойдут любые с рабочим обратным напряжением не менее 400 В.

Рис. 5.26

Время регенерации элементов составляет 6...10 часов. Сразу после регенерации напряжение на элементе будет немного превышать паспортную величину, но через несколько часов установится номинальное — 1,5 В.

Восстанавливать таким образом элементы СЦ удается три-четыре раза, если их ставить вовремя на подзарядку, не допуская полного разряда (ниже 1В).

Аналогичный принцип работы имеет схема, показанная на рис. 5.26. Она в особых пояснениях не нуждается.

 

lib.qrz.ru

Подборка простых и эффективных схем.

Мультивибратор. 

Первая схема - простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него. 

На первом рисунке изображена его принципиальная схема. 

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются. 

Для сборки потребуется минимум деталей: 

1. Резисторы 500 Ом - 2 штуки 

2. Резисторы 10 кОм - 2 штуки 

3. Конденсатор электролитический 47 мкФ на 16 вольт - 2 штуки 

4. Транзистор КТ972А - 2 штуки 

5. Светодиод - 2 штуки

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода. 

Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивайте так, как показано на рисунках.

Рисунки специально сделаны в разных ракурсах и можно подробно рассмотреть все детали монтажа. 

А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд.. 

Фотореле. 

А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф. Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод - любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами. 

На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.

При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:

Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально. 

Усилитель мощности на микросхеме TDA1558Q. 

Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера. 

Для его сборки понадобится всего пять деталей:

1. Микросхема - TDA1558Q 

2. Конденсатор 0.22 мкФ 

3. Конденсатор 0.33 мкФ – 2 штуки 

4. Электролитический конденсатор 6800 мкФ на 16 вольт 

Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора. 

Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля». 

К выводам 5, 13 и 14 припаяйте провод плюса питания. Этот же провод припаивается к плюсу конденсатора 6800 мкФ. Отогнутые вниз выводы 3, 7 и 11 так же спаиваются вместе проводом, и этот провод припаивается к минусу конденсатора 6800 мкФ. Далее от конденсатора провода идут к источнику питания. 

Выводы 6 и 8 – это выход правого канала, 6 вывод припаивается к плюсу динамика, а вывод 8 к минусу. 

Выводы 10 и 12 – это выход левого канала, вывод 10 припаивается к плюсу динамика, а вывод 12 к минусу. 

Конденсатор 0.22 мкФ надо припаять параллельно выводам конденсатора 6800 мкФ. 

Прежде чем подавать питание, внимательно проверьте правильность монтажа. На входе усилителя надо поставить сдвоенный переменный резистор 100 кОМ для регулировки громкости. 

sdelaysam-svoimirukami.ru

СХЕМЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ

   Электронными устройствами сейчас никого не удивишь. Они в каждом доме. Поэтому неудивительно и то, что с малых лет многие начинают интересоваться электроникой. В таком случае чаще всего стараются построить какое-либо более или менее сложное устройство, пользуясь описаниями конструкций. Но первые попытки редко дают хорошие результаты.

   А ведь электроника совсем не трудная. Все электронные устройства, даже самые большие, всегда составлены из простых элементов. Их существует всего несколько видов. Они лишь соединяются между собой по разным схемам. Именно поэтому работают один раз так, а другой раз иначе - в зависимости от намерений конструктора. Но это еще не все: большие электронные устройства составляются из многих маленьких основных схем. Так, как из деревянных кубиков: часто из одинаковых кирпичиков можно построить даже огромный, великолепный дворец.

   Поговорим о строительстве вычислительных машин, усилителей, счетчиков импульсов, и о многом другом, о том, что строится из основных элементов: резисторов, трансформаторов, конденсаторов, транзисторов и интегральных схем которые лежат в основе радиоэлектроники. В современной высокоразвитой электронной промышленности заняты десятки тысяч человек. Одни выращивают высокочистые полупроводниковые кристаллы. Другие изготавливают на высокоточном оборудовании интегральные микросхемы. Третьи разрабатывают их топологию. Четвертые заняты программным обеспечением ЭВМ. Есть масса занятий для пятых, шестых и т.д. Но все они вместе возводят одно величественное здание современной электронной техники, без которой уже не может обойтись ни одна отрасль народного хозяйства.

   Любое современное здание, например жилой дом, строится из ограниченного набора блоков - панелей, балок, перекрытий. Расположив эти блоки в различных сочетаниях, можно построить и низкое длинное здание и, возвышающийся как башня над всем городом, небоскреб. Даже при ограниченном наборе основных блоков архитекторам предоставлена широкая свобода для творчества. Так и в современной электронике из сравнительно небольшого числа основных базовых блоков - «кирпичиков»: транзисторов, конденсаторов, резисторов и т. д. можно создать бесчисленное множество электронных устройств: радиоприемники, телевизоры, устройства записи и воспроизведения звука, передачи данных, ЭВМ и многие - многие другие. Что же эти элементы из себя представляют?

   Резистор - структурный элемент электрической цепи, основное функциональное назначение которого оказывать известное сопротивление электрическому току с целью регулирования тока и напряжения. Резистор имеет основные параметры:

   Номинальное сопротивление – это сопротивление конкретного прибора, измеряется в Омах. Для каждой цепи необходимы свои наборы номиналов.  

   Рассеиваемая мощность – это разделение резисторов по максимальной мощности, измеряется в Ваттах.

   Допуск – это погрешность сопротивлений резистора, указывается в процентах.  

   Сейчас можно встретить как микроминиатюрные SMD резисторы, так и мощные в керамическом корпусе. Существуют невозгораемые, разрывные и прочие, перечислять их можно очень долго, но основные параметры у них одинаковые.

   Варикап - конденсатор в виде полупроводникового диода, ёмкость которого нелинейно зависит от приложенного к нему электрического напряжения. Эта ёмкость представляет собой барьерную ёмкость электронно - дырочного перехода изменяется от единиц до сотен пико фарад. Параметры варикапа:

   Максимальное обратное постоянное напряжение – это максимальное напряжение, которое можно подавать на варикап. Измеряется в Вольтах.

   Номинальная емкость варикапа – это емкость варикапа при фиксированном обратном напряжении.

   Коэффициент перекрытия – это отношение максимальной емкости к минимальной.

   Кроме обычных варикапов используют сдвоенные и строенные варикапы с общим катодом. Чаще всего они используются в радиоприемных устройствах, где необходимо одновременно перестраивать входной контур и гетеродин с помощью одного потенциометра. Но делают и сборки нескольких варикапов в одном корпусе.

   Транзистор - полупроводниковый триод - радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять выходным током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов.

   Трансформатор – один из самых распространённых электротехнических устройств, как в бытовой технике, так и в силовой электротехнике. Назначение трансформатора заключается в преобразовании электрического тока одной величины в другую, большую, или меньшую. Трансформаторы предназначены для преобразования переменного, импульсного и пульсирующего тока. Если подвести к трансформатору постоянный ток, то получится, лишь раскалённый кусок провода.

   Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Основные параметры конденсатора:

   Номинальная емкость – это мощность, на которую рассчитан конденсатор, при номинальном напряжении, номинальной емкости и номинальной частоте. Измеряется в Фарадах.

   Номинальное напряжение – это значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

   Допуск – это отклонение величины реальной емкости от указанной на корпусе, указывается в процентах.  

   Из весьма скромного набора основных элементов, имеющихся в распоряжении радиотехников, конструируют все. От электронного дверного звонка, исполняющего мелодию, до сложных синтезаторов современных групп; от зарядного устройства для телефона, до персонального компьютера, способного сыграть с вами партию в шахматы. Но в современном строительстве используются не только кирпичи, но и всевозможные блоки.

   Так что же это за «блоки-кирпичики»? Интегральные микросхемы. Некоторые из них и по форме напоминают маленький пластмассовый кирпичик с двумя гребенками выводов. По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы. Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в компьютерах.

   Интегральная микросхема представляет собой миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные - элементы, число которых может достигать нескольких десятков тысяч. Одна микросхема Может заменить целый блок радиоприемника, компьютера и электронного автомата. «Механизм» наручных электронных часов, например, - это всего лишь одна микросхема.

   Основным элементом аналоговых микросхем являются транзисторы. Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Микросхемы на полевых транзисторах самые экономичные - по потреблению тока.

   Что находится внутри радиоэлектронного элемента? Сырьем для них может служить обычный песок. Не верите? Песок представляет собой окись кремния SiO2. А кремний является основой для производства подавляющего большинства полупроводниковых элементов электроники. Разумеется, нужны и другие материалы: пластмасса, керамика, алюминий, серебро и даже золото. Разрезать аккуратно и точно кремниевую пластинку лучше всего алмазной пилой.

   Все это привело к появлению микромодулей, схем на тонких пленках, молекулярных блоков - это все различные пути уменьшения габаритов электронных устройств. Так как перед современной техникой ставятся сложные задачи, для выполнения которых требуют от электронных устройств тысячи часов безотказной работы. Только миниатюризация может позволить улучшить качества и надежность элементов. Чем меньше габариты электронных устройств, чем монолитней их структура, тем легче они противостоят ударным и вибрационным нагрузкам. Моноблоки не боятся высоких температур, а надежность их просто поразительна - они могут работать без отказа десятки тысяч часов!

   Миниатюризация влияет и на радиоэлементы схем, упрощая их производство, уменьшая размеры, увеличивая производительность и надежность, что помогло человеку создать всю архитектуру техники, необходимую для любой отрасли его деятельности.

Поделитесь полезными схемами
СХЕМА ИИП

   Принципиальная схема ИИП изображена на рисунке ниже. Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр C1L1C2, предотвращающий попадание помех в сеть. Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1—VD4, пульсации сглаживаются конденсатором С3.

УСТРОЙСТВО РЕЗЕРВНОГО ПИТАНИЯ

   Простое самодельное устройство для резервного электропитания маломощной батареечной аппаратуры, требующей бесперебойного обеспечения напряжением.

samodelnie.ru