Каковы условия существования электрического тока. Что такое электрический ток? Условия существования электрического тока: характеристики и действия
SET 8-861-260-24-40, 8 (989) 212 27 02
sale@les66.ru
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Физика - ответы на экзамен 1-29 / Электрический ток, условия его существования. Каковы условия существования электрического тока


Электрический ток, условия его существования

Электрический ток - упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.

Прохождение тока по проводнику сопровождается следующими его действиями:

магнитным (наблюдается во всех проводниках)

тепловым (наблюдается во всех проводниках, кроме сверхпроводников)

химическим (наблюдается в электролитах).

УСЛОВИЯ  СУЩЕСТВОВАНИЯ   ЭЛЕКТРИЧЕСКОГО ТОКА

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

наличие в среде свободных электрических зарядов

создание в среде электрического поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока 

основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

I = q/t .   (1)

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называетсяпеременным.

Для переменного тока:

I = lim q/t , (*) t - 0

т.е. I = q', где q' - производная от заряда по времени.

2. Плотность тока - j, единица измерения - 1 А/м2.

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

j = I/S .   (2)

3. Электродвижущая сила источника тока - э.д.с. (  ), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

 = Аст./q . (3)

4. Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

R = *l/S ,  (4)

где

l - длина проводника, S - площадь поперечного сечения,  - коэффициент пропорциональности, названный удельным сопротивлением материала.

5. Напряжение - U , единица измерения - 1 В.Напряжение - физическая величина, равная работе, совершаемой сторонними  и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .   (8)

Так как  Аст./q = , а  Аэл./q = , то

U =  + (

studfiles.net

каковы, в проводнике, в цепи

У многих запоминание основных понятий электродинамики вызывает проблему. Для лучшего усвоения материала необходима ассоциация, которая покажет смысл главных определений и явлений. Рассмотрим на простейших примерах рассматриваются важнейшие понятия, связанные с электричеством.

Суть электрического тока и поля

Электрический ток – движение заряженных частиц в одном направлении. Он направлен туда, куда движутся положительные заряды. Данное явление можно сравнить с движениями молекул воды в трубе. Хаотичные колебания не являются течением, так как их суммарная направленность равна нулю.

Чтобы все молекулы начали передвигаться в одном направлении, нужно приложить силу. Например, поднять один конец трубы, тогда вода начнёт перетекать в противоположном направлении. А для появления тока нужно создать электрическое поле. Так как частицы заряжены (они положительные), то в присутствии поля они будут передвигаться в одном направлении.

Существует две разновидности тока:

  • постоянный – у которого направление движения заряда не меняется со временем;
  • переменный – у которого направление движения периодически меняется.

Данное явление сопровождается некоторыми процессами:

  • магнитными, что характерно для всех проводников;
  • тепловыми, что также есть везде, кроме сверхпроводников;
  • химическими, что имеется лишь в электролитах.

Условия существования электрического тока в проводнике:

  • присутствие в проводнике свободных заряженных частиц;
  • появление электрического поля.

Основные понятия

Прежде чем разбирать, каковы условия существования электрического тока, полезно познакомиться с основными понятиями, которые часто используются при описании процессов.

Сила тока

В формулах обозначается как I (и), единицей измерения является ампер (А). Силой тока называют то, какой заряд протекает через поперечное сечение проводника за единицу времени. Ассоциацией может стать то, сколько воды протекает через сечение трубы за единицу времени.

Напряжение

В формулах обознается как U, единицей измерения является Вольт (В). Напряжение – это работа, которая совершается для перемещения по электрической цепи одной положительно заряженной частицы. В сравнении с водой можно привести такую ассоциацию, что это объём работы, который нужен для перемещения литра жидкости из одного конца трубы в другой.

Сопротивление

Сопротивление в формулах обозначается как R, единицей измерения служит Ом (Ом). Физический смысл явления заключается в сопротивлении, которое оказывает проводник при движении частиц. В вакууме заряды перемещаются гораздо быстрее, так как им ничто не мешает, но в веществе на них ложится дополнительная нагрузка из-за кристаллической решётки.

Удельное сопротивление для каждого материала своё, это статичные цифры, которые можно посмотреть в справочнике. Интересно, что этот параметр сильно зависит от температуры, что объясняется движением элементов кристаллической решётки, а также высвобождением частиц при повышении температуры.

Чтобы было понятней, нужно вспомнить движение воды по трубе. Ведь жидкость при течении тоже испытывает сопротивление, которое выражается в силе трения. Но для более схожей картины нужно представить, что вся труба уставлена решётками, которые тоже притормаживают движение воды.

Электрическое поле

Важным условием существования электрического тока является одноимённое поле. Оно требуется для того, чтобы все заряженные частицы начали двигаться в одном направлении. Формула этого явления такая: на заряд q в созданном поле с напряжением E действует сила F = q*E. Именно она и вынуждает заряженные частицы перемещаться в определённом направлении.

При отсутствии поля в проводнике нет разности потенциалов (в любых его двух точках). Поэтому доказательством наличия в проводнике поля может послужить неравенство потенциалов. Движущиеся же заряды стремятся эту разность нейтрализовать. Именно из-за этого поле не способно вечно поддерживать ток. Так как с течением времени заряженные частицы уберут неравенство потенциалов, что приведёт к исчезновению электрического поля.

Чтобы движение зарядов было в замкнутой цепи постоянно, нужен внешний источник энергии неэлектрической природы, который будет создавать разность потенциалов в системе. Такой прибор именуется источником тока, обязательный конструктивный элемент в нём – устройство, преобразующее химическую, механическую, тепловую или ядерную энергию в электрическую.

Свободные заряды

Другим важнейшим условием существования электрического тока в проводнике является наличие заряженных частиц. Существует всего 2 разновидности: электрон и протон. Электрон – отрицательный заряд, который в атомах вращается по сложной орбите вокруг ядра. Протон – положительно заряженная частица, которая гораздо тяжелее и крупнее электрона, она вместе с нейтронами (незаряженными) создаёт ядро атома.

Отсюда видно, что большая часть протонов и электронов в веществе не свободна, а соединена в молекулах. Однако электрический ток могут создавать лишь свободные частицы, так как связанные заряды нейтрализуют друг друга. Тем не менее, во многих соединениях имеются свободные частицы, к таким веществам относится вода, многие металлы.

Интересно, что количество свободных зарядов можно увеличить, если передать энергию атому. Тогда электрон слетит с орбиты и освободиться. Энергию можно передать с помощью нагревания. Известно, что у полупроводников увеличивается количество свободных заряженных частиц при повышении температуры.

Скорость тока

При создании условий существования электрического тока в цепи, он возникает во всём проводнике мгновенно, то есть со скоростью света, несмотря на то, что протоны движутся гораздо медленнее. Это связано с тем, что протоны, как будто толкают друг друга, поэтому, когда протон в одном конце проводника начинает своё движение, то почти сразу начинают двигаться частицы в другом конце цепи.

Приведём пример с водой. Если в трубе уже есть жидкость, то, закачивая в один её конец ещё один литр, можно обнаружить, что из другого конца сразу же полилась вода. Несмотря на то, что залитая вода не продвинулась по трубе. Просто новый литр приводит в движение сразу всю жидкость, которая находится в ёмкости.

Читайте также:

electroadvice.ru

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока,  S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A - полная работа сторонних и кулоновских сил,  q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая  электрические свойства участка цепи.

где ρ - удельное сопротивление проводника, l - длина участка проводника,  S - площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G - проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке,  R - сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1 - φ2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи,  r - электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

Электродвижущая сила. Любой источник тока характеризуется электродвижущей силой, или, сокращенно, ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?    Соедините проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис.15.7). Но этот ток будет очень кратковременным. Заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет.

   Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис.15.8). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

   Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.    Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет еще очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают ее затем проводникам электрической цепи.    Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.    При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис.15.8).    Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы - это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.    В гальваническом элементе, например элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток в замкнутой электрической цепи.    Электродвижущая сила. Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).   Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда:

   Электродвижущую силу, как и напряжение, выражают в вольтах.    Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элементаесть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого источника равна нулю.    Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

Включим в электрическую цепь в качестве нагузки ( потребителей тока) две лампы накаливания, каждая из которых обладает каким-то определенным сопротивлением, и каждую из которых  можно заменить проводником с таким же сопротивлением.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи  при последовательном соединении сопротивлений:

1. сила тока во всех последовательно соединенных участках цепи одинакова 2. напряжение в цепи, состоящей из нескольких последовательно соединенных участков,  равно сумме напряжений на каждом участке 3.сопротивление цепи, состоящей из нескольких последовательно соединенных участков,  равно сумме сопротивлений каждого участка

4. работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках

А = А1 + А2 5. мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участка

Р = Р1 + Р2

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

 

Расчет параметров электрической цепи при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках

2. напряжение на всех параллельно соединенных участках цепи одинаково

  3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению :

( R - сопротивление проводника, 1/R - электрическая проводимость проводника)

Если в цепь включены параллельно только два сопротивления, то:

( при параллельном соединении общее сопротивление цепи меньше меньшего из включенных сопротивлений )

4. работа электрического тока в цепи, состоящей из параллельно соединенных участков,  равна сумме работ на отдельных участках: A=A1+A2 5. мощность электрического тока в цепи, состоящей из параллельно соединенных участков,  равна сумме мощностей на отдельных участках: P=P1+P2

Для двух сопротивлений:  т.е. чем больше сопротивление, тем меньше в нём сила тока.

Закон Джоуля-Ленца - физический закон, который позволяет определить тепловое дествие тока в цепи, по этому закону: , где I - сила тока в цепи, R - сопротивление, t - время. Данная формула была вычесленена путём создания цепи: гальванический эллемент (батарейка), резистор и амперметр. Резистор окунали в жидкость, в которую вставляли термометр и мерили темпиратуру. Вот так они и вывели свой закон и навсегда себя впечатали в историю, но даже без их опытов можно было вывести этот же закон:

U=A/q   A=U*q=U*I*t=I^2*R*t   но даже не смотря на это честь и хвала этим людям.

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения.

РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы: I = q/t ..... и ..... U = A/q  можно вывести формулу для расчета работы электрического тока: Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ: [ A ] = 1 Дж = 1A. B . c

НАУЧИСЬ, ПРИГОДИТСЯ !  При расчетах работы электрического тока часто применяется  внесистемная кратная единица работы электрического тока: 1 кВт.ч (киловатт-час).

1 кВт.ч = ...........Вт.с = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные приборы-счетчики электроэнергии, которые показывают работу электрического тока,  совершенную за какой-то отрезок времени при включении различных бытовых электроприборов.  Эти счетчики показывают работу электрического тока ( расход электроэнергии) в "кВт.ч".

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии! Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52) ! 

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р) так как А = IUt, то мощность электрического тока равна:

или 

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А . B

 Законы Кирхгофа – правила, которые показывают, как соотносятся токи и напряжения в электрических цепях.Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

   Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю. 

       Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i1 и i2. Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i1-i2=0. Ток i как бы растекается на два тока поменьше и равен сумме токов i1 и i2 i=i1+i2. Но если бы, например, ток i2входил в узел, тогда бы ток I определялся как i=i1-i2. Важно учитывать знаки при составлении уравнения.

   Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.

    Второй закон Кирхгофа – алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре. 

 Напряжение выражено как произведение тока на сопротивление (по закону Ома). 

 

  В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДСи напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E2 и Е3совпадают с ней по направлению, значит знак плюс, а Е1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I1 совпадает по направлению со стрелкой, а токи I2 и I3 направлены противоположно. Следовательно:

              -E1+E2+E3=I1R1-I2R2-I3R3

   На основании законов Кирхгофа составлены методы анализа цепейпеременного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциаловоснованный на применении первого закона Кирхгофа.

studfiles.net

Электрический ток. Условия существования тока. Основные понятия.

Электрический ток - упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.

Прохождение тока по проводнику сопровождается следующими его действиями:

    * магнитным (наблюдается во всех проводниках)    * тепловым (наблюдается во всех проводниках, кроме сверхпроводников)    * химическим (наблюдается в электролитах).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

    * наличие в среде свободных электрических зарядов    * создание в среде электрического поля.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.I = Dq/Dt .

Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.Для переменного тока:I = lim Dq/Dt ,Dt - 0

т.е. I = q', где q' - производная от заряда по времени.2. Плотность тока - j, единица измерения - 1 А/м2.Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:j = I/S .

3. Электродвижущая сила источника тока - э.д.с. ( e ), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:e = Аст./q .

4. Сопротивление проводника - R, единица измерения - 1 Ом.Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, чтоR = r*l/S ,

гдеl - длина проводника,S - площадь поперечного сечения,r - коэффициент пропорциональности, названный удельным сопротивлением материала.Эта формула хорошо подтверждается на опыте.Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, чтоr = r0(1 + a t) ,R = R0(1 + a t) .

Коэффициент a называется температурным коэффициентом сопротивления:a = (R - R0)/R0*t .

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s s = 1/r .

5. Напряжение - U , единица измерения - 1 В.Напряжение - физическая величина, равная работе, совершаемой сторонними  и электрическими силами при перемещении единичного положительного заряда.U = (Aст.+ Аэл.)/q .

Так как  Аст./q = e, а  Аэл./q = f1-f2, тоU = e + (f1 - f2) .

www.examen.ru

Электрический ток и условия его существования.

Электрический ток и условия его существования.

Электрический ток – это упорядоченное, направленное, движение свободных зарядов в проводнике.

Постоянный ток – это эл.ток, характеристики которого со временем не меняются.

Условия существования электрического токаДля возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:-наличие в среде свободных электрических зарядов-создание в среде электрического поля.В разных средах носителями электрического тока являются разные заряженные частицы.

Сила тока I скалярная величина, характеризующая заряд Q, проходящий через поперечное сечение проводника за единицу времени. Q=q*N I=Q/t

Сила тока измеряется в амперах, а заряд в кулонах. I=[A], Q=[Кл]

Плотность тока – j векторная величина j Vq , показывает силу тока на единицу Sсеч.

j=I/Sсеч Площадь сечения Sсеч. измеряется в квадратных метрах

Сторонние силы. Электродвижущая сила и напряжение.

Сторонние силы – это такие силы, которые отличаются по природе от сил электростатического поля.

Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде, электрическими (но не электростатическими) полями, порождаемыми переменными во времени магнитными полями, и т. д.

ЭДС - физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:ε = Аст./q Единица измерения — 1 В (Вольт)

Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.U = (Aст.+ Аэл.)/q Единица измерения — 1 В.

Электрическая цепь. Однородный и неоднородный участок цепи.

Однородные и неоднородные участки цепи

Однородный участок цепи – участок цепи, на котором не действуют никакие сторонние силы(нет ист.тока)

Неоднородный участок цепи – участок цепи, на котором есть источник тока.

Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитных процессов.

 

 

Электрическая цепь. Внешний и внутренний участок цепи, падение напряжения.

Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитных процессов.

Электрическая цепь может быть разделена на два участка: внешний и внутренний.

Внешний участок, или, как говорят, внешняя цепь, состоит из одного или нескольких приемников электрической энергии, соединительных проводов и различных вспомогательных устройств, включенных в эту цепь.

Внутренний участок, или внутренняя цепь,— это сам источник.

Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением.

.

Сопротивление проводника

Сопротивление – величина, пропорциональная длине проводника l и обратно пропорциональна площади его поперечного сечения S

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Удельное электрическое сопротивление проводника ρ [Ом*м] ρ=RS/l R = ρ*l/S

 

Закон Ома для участка цепи и для замкнутой цепи

Закон Ома для участка электрической цепи - сила тока на участке электрической цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка.

I=U/R

Закон Ома для полной электрической цепи - сила тока в электрической цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи (сумме внешнего и внутреннего сопротивлений)

I = ε / (R + r). где R - сопротивление внешнего участка цепи,r - внутреннее сопротивление.

Последовательное соединение потребителей энергии

При последовательном соединении проводники соединены последовательно, то есть друг за другом, при этом I=const, U=U1+U2+U3+…+Un и R=R1+R2+R3+…+Rn

 

 

Параллельное соединение источников тока.

Работа электрического тока

Работа эл.тока А равна произведению величины перемещаемого заряда Q на напряжение U

A=Q*U [A]=Дж, [U]=B, [Q]=Кл , [t]=c.

Т.к. I=Q/t, => Q=I*t, значит A=I*U*t

По закону Ома для участка цепи I=U/R, U=I*R

A=I*U*T => A=U2*t/R(удобно при паралл.соед.) => A=I2*R*t(удобно при последов.)

Природа света.

Природа света - волновая.

17 век Христиан Гюйгенс : 1) дифракция-огибание светом препятствий 2)интерференция-сложение волн.

19 век - теория максвелла (скорость света – частный случай электромагнитных волн) - электромагнитная теория скорость распространения электромагнитных волн в вакууме 3*108 м/c равная скорости света в вакууме. 299 тыс. км/с

17в век О.Ремер астрономическим методом получил скорость света примерно 214,3 км/с

19 век. Физо скорость света примерно 313тыс.км/с

Природа света – квантовая.

примерно 500 лет до н/э Пифагор: свет - поток частиц.

17 век Исак Ньютон придерживался этой же теории. Карпускула(от лат.) – частица.

Карпускулярная теория Ньютона: 1) прямолинейное распространение свет 2) закон отражения 3) образование тени от предметов

19 в Генрих Герц открыл явление фотоэффекта.

20 век.Свет имеет двойственную природу - обладает корпускулярно-волновым дуализмом: при распространении - как волна, а при излучении и поглощении - как поток частиц.

связь между длинной иволны лямда и частотой ню

лямда=с/ню с - скорость света в вакууме [м/с] лямда [м] ню [Гц]

Законы отражения

1.Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

2Угол отражения γ равен углу падения α: γ = α

 

Зеркальное отражение - если шероховатости меньше лямды и дифузное шероховатости сравнимы с лямда

Диффузное отражение света. Зеркальное отражение света.

Законы преломления света.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления γ есть величина, постоянная для двух данных сред:

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

n = n2/n1.

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Природа света из 26.

Интерференция волн– это явление наложения когерентных волн; свойственно волнам любой природы (механическим, электромагнитным и т.д.)

Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.

При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения ) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.При наложении когерентных волн возможны два предельных случая:

Условие максимума:

где

Разность хода волн равна целому числу длин волн ( иначе четному числу длин полуволн).

В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.

Условие минимума:

, где

Разность хода волн равна нечетному числу длин полуволн.

Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.Амплитуда колебаний данной точки равна нулю.

В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.

При интерференции волн амплитуда колебаний каждой точки не меняется во времени и остается постоянной.

При наложении некогерентных волн нет интерференционной картины, т.к. амплитуда колебаний каждой точки меняется со временем.

Интерференция света

1802г. Английский физик Томас Юнг поставил опыт, в котором наблюдалась интерференция света.

Опыт Томаса Юнга

От одного источника через щель А формировались два пучка света ( через щели В и С), далее пучки света падали на экран Э. Так как воны от щелей В и С были когерентными, на экране можно было наблюдать интерференционную картину: чередование светлых и темных полос.

Светлые полосы – волны усиливали друг друга (соблюдалось условие максимума).Темные полосы – волны складывались в противофазе и гасили друг друга (условие минимума).

Если в опыте Юнга использовался источник монохроматического света (одной длины волны, то на экране наблюдались только светлые и темные полосы данного цвета.)

Если источник давал белый свет (т.е. сложный по своему составу), то на экране в области светлых полос наблюдались радужные полосы. Радужность объяснялась тем, что условия максимумов и минимумов зависят от длин волн.

Интерференция в тонких пленках

Явление интерференции можно наблюдать, например:

- радужные разводы на поверхности жидкости при разливе нефти, керосина, в мыльных пузырях;

Толщина пленки должна быть больше длины световой волны.

При проведении своего опыта Юнгу впервые удалось измерить длину световой волны.

В результате опыта Юнг доказал, что свет обладает волновыми свойствами.

Применение интерференции:- интерферометры – приборы для измерения длины световой волны- просветление оптики ( в оптических приборах при прохождении света через объектив потери света составляют до 50%) – все стеклянные детали покрывают тонкой пленкой с показателем преломления чуть меньше, чем у стекла; перераспределяются интерференционные максимумы и минимумы и потери света уменьшаются.

Природа света из 26.

ДИФРАКЦИЯ СВЕТА

Дифракция - это явление, присущее волновым процессам для любого рода волн.

Дифракция света– это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.

Явление дифракции света доказывает, что свет обладает волновыми свойствами.

Для наблюдения дифракции можно:

- пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.- или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

Дифракционная решетка

- это оптический прибор для измерения длины световой волны.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.

Если на решетку падает монохроматическая волна . то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.

Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.

Итак, условие максимума:

где k – порядок (или номер) дифракционного спектра

Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.

Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.

 

ПОЛЯРИЗАЦИЯ СВЕТА

Поляризация волн

Свойство поперечных волн – поляризация.

Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Поляризация света

Опыт с турмалином – доказательство поперечности световых волн.

Кристалл турмалина – это прозрачный, зеленого цвета минерал, обладающий осью симметрии.

В луче света от обычного источника присутствуют колебания векторов напряженности электрического поля Е и магнитной индукции В всевозможных направлений, перпендикулярных направлению распространения световой волны. Такая волна называется естественной волной.

При прохождении через кристалл турмалина свет поляризуется. У поляризованного света колебания вектора напряженности Е происходят только в одной плоскости, которая совпадает с осью симметрии кристалла.

Поляризация света после прохождения турмалина обнаруживается, если за первым кристаллом (поляризатором) поставить второй кристалл турмалина (анализатор).При одинаково направленных осях двух кристаллов световой луч пройдет через оба и лишь чуть ослабнет за счет частичного поглощения света кристаллами.

Схема действия поляризатора и стоящего за ним анализатора:

Если второй кристалл начать поворачивать, т.е. смещать положение оси симметрии второго кристалла относительно первого, то луч будет постепенно гаснуть и погаснет совершенно, когда положение осей симметрии обоих кристаллов станет взаимно перпендикулярным.

Применение поляризованного света:

- плавная регулировка освещенности с помощью двух поляроидов- для гашения бликов при фотографировании (блики гасят, поместив между источником света и отражающей поверхностью поляроид)

- для устранения слепящего действия фар встречных машин.

Поляроид, поляризационный светофильтр, один из основных типов оптических линейных поляризаторов; представляет собой тонкую поляризационную плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками).

ДИСПЕРСИЯ

Луч белого света, проходя через трехгранную призму не только отклоняется, но и разлагается на составляющие цветные лучи.Это явление установил Исаак Ньютон, проведя серию опытов.

Опыты Ньютона

Опыт по разложению белого света в спектр:

или

Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму. Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.

 

Опыт по синтезу (получению) белого света:

Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия.

Выводы Ньютона:

- призма не меняет свет, а только разлагает его на составляющие- световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные

- красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый - наименьшую, поэтому призма и разлагает свет.Зависимость показателя преломления света от его цвета называется дисперсией.

Запомни фразу, начальные буквы слов которой дают последовательность цветов спектра:

"Каждый Охотник Желает Знать, Где Сидит Фазан".

Спектр белого света:

Выводы:

- призма разлагает свет- белый свет является сложным (составным)- фиолетовые лучи преломляются сильнее красных.

Цвет луча света определяется его частотой колебаний.

При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной.

Границы диапазонов белого света и его составляющих принято характеризовать их длинами волн в вакууме.Белый свет – это совокупность волн длинами от 380 до 760 нм.

Где можно наблюдать явление дисперсии?

- при прохождении света через призму- преломление света в водяных каплях, например, на траве или в атмосфере при образовании радуги- вокруг фонарей в тумане.

Как объяснить цвет любого предмета?

- белая бумага отражает все падающие на нее лучи различных цветов- красный предмет отражает только лучи красного цвета, а лучи остальных цветов поглощает- Глаз воспринимает отраженные от предмета лучи определенной длины волны и таким образом воспринимает цвет предмета.

 

Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

Электрический ток и условия его существования.

Электрический ток – это упорядоченное, направленное, движение свободных зарядов в проводнике.

Постоянный ток – это эл.ток, характеристики которого со временем не меняются.

Условия существования электрического токаДля возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:-наличие в среде свободных электрических зарядов-создание в среде электрического поля.В разных средах носителями электрического тока являются разные заряженные частицы.

Сила тока I скалярная величина, характеризующая заряд Q, проходящий через поперечное сечение проводника за единицу времени. Q=q*N I=Q/t

Сила тока измеряется в амперах, а заряд в кулонах. I=[A], Q=[Кл]

Плотность тока – j векторная величина j Vq , показывает силу тока на единицу Sсеч.

j=I/Sсеч Площадь сечения Sсеч. измеряется в квадратных метрах

lektsia.com

Условия существования электрического тока

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

наличие в среде свободных электрических зарядов;
создание в среде электрического поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимодля создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью Eдействует сила F= q*E,которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепина заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Основные характеристики

1.Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Я =DQ /Dт.(1)

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

Я = НтДд /Дт,(*)

Дт - 0

т.е. = q', гдеq'- производная от заряда по времени.

2.Плотность тока — j, единица измерения - 1 А/м2.

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

J = I / S. (2)

3.Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

е = а друг. / г. (3)

4.Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

R = R* L / S Э, (4)

где

l - длина проводника,

S - площадь поперечного сечения,

r - коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

г = г 0 (1 + т), (5)

R = R 0 (1 + т).

Коэффициент a называется температурным коэффициентом сопротивления:

а = (R - R0) / R0 * т.

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t)для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью с

с = 1 / г. (7)

5.Напряжение — U , единица измерения - 1 В.

Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (ст. + Аэл.) / Q (8)

Так как Аст./q = e, а Аэл./q = f1-f2, то

U = е + (е1 — е2) (9)

2.7.2 Основы электробезопасности

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых,воздействие тока вызывает у человека резкую реакцию отдергивания, а в ряде случаев и потерю сознания, что при работе навысоте может привести к травмированию в результате падения.

Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов,

электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельностинаиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца.

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги — наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает.

Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

Оценивать опасность воздействия электрического тока на человека проявляются три качественно отличные ответные реакции. Это прежде всего ощущение, более судорожное сокращение мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

С увеличением тока четко проявляются три качественно отличные

ответные реакции. Это прежде всего ощущение, более судорожное сокращение

мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

В целях обеспечения электробезопасности используют следующие технические способы и средства (часто в сочетании одного с другим): защитное заземление; зануление; защитное отключение; выравнивание потенциалов; малое напряжение; электрическое разделение сети; изоляцию токоведущих частей; оградительные устройства; предупредительную сигнализацию, блокировку, знаки безопасности; электрозащитные средства, предохранительные приспособления и др.

Защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических не токоведущих частей, которые могут оказаться под напряжением в результате повреждения изоляции (ГОСТ 12.1.009-76). Защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью.

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (не более чем за 0,2 с) при возникновении в ней повреждения, в том числе при пробое изоляции на корпус оборудования.

Выравнивание потенциалов- метод снижения напряжений прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Малое напряжение - номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.

Электрическое разделение сети - разделение сети на отдельные, электрически не связанные между собой, участки с помощью разделяющего

трансформатора. Если сильно разветвленную электрическую сеть, имеющую

большую емкость и малое сопротивление изоляции, разделить на ряд небольших сетей такого же напряжения, то они будут обладать незначительной емкостью и высоким сопротивлением изоляции. Опасность поражения током при этом резко снижается.

Изоляция в электроустановках служит для защиты от случайного прикосновения к токоведущим частям. Различают рабочую, дополнительную, двойную и усиленную электрическую изоляцию.

Оградительные устройства используются для предотвращения прикосновения или опасного приближения к токоведущим частям.

Блокировки широко применяются в электроустановках. Они бывают механическими, электрическими, электромагнитными и др. Блокировки обеспечивают снятие напряжения с токоведущих частей при попытке проникнуть к ним при открывании ограждения без снятия напряжения.

Механическое воздействие

Механические воздействия со стороны окружающей среды сопровождают человека всю жизнь. Такие воздействия могут быть непрерывными (сила тяжести, атмосферное давление) или кратковременными (аварии, спортивные травмы, погружение в воду). Биомеханические проявления механического воздействия зависят от его продолжительности и интенсивности. Например, воздействие на голову силы величиной в десятки килоньютон приводит к разрушению костей свода черепа за доли миллисекунды. Если силу воздействия уменьшить на порядок, а время воздействия на порядок увеличить, то разрушение охватит большие области черепа. Дальнейшее снижение интенсивности и увеличение времени воздействия приведет к тому, что разрушение черепа не наступит, но возникнет перемещение мозга относительно черепа.По характеру действия механические воздействия можно условно разделить на два вида: статические и динамические.

Вид воздействий Проявление
Статические Телу (отдельным элементам) сообщаются малые ускорения, которые можно не учитывать
Динамические Телу (отдельным элементам) сообщаются большие ускорения, с которыми связаны значительные силы инерции

Статические воздействия.Длительные (регулярные) статические воздействия приводят к направленным изменениям в организме. К таким воздействиям можно отнести многие виды тренировок спортсменов. Так, регулярные нагрузки на определенные группы мышц приводят к увеличению их объема и силы (гантели, штанга, тренажеры). Упражнения на растяжку позволяют увеличить эластичность мышц и связок.В то же время длительные статические нагрузки могут привести и к развитию заболеваний. Например, к искривлению позвоночника при неправильной осанке. Отметим также, что длительные статические нагрузки целенаправленно использовались для создания анатомических изменений, в соответствии с «местными» представлениями о красоте. Например, тугое пеленание ступней девочек в Китае для ограничения их роста.Кратковременные статические нагрузки, приложенные в соответствующих направлениях, могут привести к серьезным травмам или летальному исходу. На этом основано действие болевых приемов.Динамические кратковременные воздействия.Кратковременные динамические воздействия часто называют ударными. Они характеризуются высокой интенсивностью и малой длительностью. Например, воздействие на организм при катапультировании. Ударные воздействия сопровождаются значительным ускорением тела или его отдельных частей. Перегрузки, возникающие при ударных воздействиях, принято выражать отношением к ускорению свободного падения:

Понятие ударного воздействия достаточно условно. Некоторые авторы относят к ударным воздействия, длительность которых менее одной секунды. Однако следует иметь в виду, что травмы органов могут возникнуть при перегрузках любой длительности. Поэтому предельную допустимую длительность перегрузки определяют с физиологических позиций. Она может лимитироваться не .только уровнем механических напряжений в тканях, но и перемещением жидких сред организма, например, перемещением крови при выполнении фигур пилотажа.



infopedia.su

Что такое электрический ток? Условия существования электрического тока: характеристики и действия

Бизнес 9 июля 2017

Электрический ток - это электрический заряд в движении. Он может принимать форму внезапного разряда статического электричества, такого как, например, молния. Или это может быть контролируемый процесс в генераторах, батареях, солнечных или топливных элементах. Сегодня мы рассмотрим само понятие "электрический ток" и условия существования электрического тока.

Электрическая энергия

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электрической сети. Он создается генераторами, работающими по закону индукции Фарадея, благодаря которому изменяющееся магнитное поле может индуцировать электрический ток в проводнике.

Генераторы имеют вращающиеся катушки провода, которые проходят через магнитные поля по мере их вращения. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и создают электрический ток, меняющий направление на каждом повороте. Ток проходит через полный цикл вперед и назад 60 раз в секунду.

Генераторы могут питаться от паровых турбин, нагретых углем, природным газом, нефтью или ядерным реактором. Из генератора ток проходит через ряд трансформаторов, где растет его напряжение. Диаметр проводов определяет величину и силу тока, которую они могут переносить без перегрева и потери энергии, а напряжение ограничено только тем, насколько хорошо линии изолированы от земли.

Интересно отметить, что ток переносится только одним проводом, а не двумя. Две его стороны обозначаются как положительная и отрицательная. Однако, поскольку полярность переменного тока изменяется 60 раз в секунду, они имеют и другие названия - горячие (магистральные линии электропередач) и заземленные (проходящие под землей для замыкания цепи).

Видео по теме

Зачем нужен электрический ток?

Существует масса возможностей применения электротока: он может осветить ваш дом, вымыть и высушить одежду, поднять дверь вашего гаража, заставить вскипеть воду в чайнике и дать возможность работать другим бытовым предметам, которые значительно облегчают нам жизнь. Тем не менее все более важным становится способность тока передавать информацию.

При подключении к Интернету компьютером используется лишь небольшая часть электрического тока, но это то, без чего современный человек не представляет своей жизни.

Понятие об электрическом токе

Подобно речному течению, потоку молекул воды, электрический ток - это поток заряженных частиц. Что это такое, что его вызывает, и почему он не всегда идет в одном направлении? Когда вы слышите слово «течет», о чем вы думаете? Возможно, это будет река. Это хорошая ассоциация, потому что именно по этой причине электрический ток получил свое название. Он очень похож на поток воды, только вместо молекул воды, движущихся по руслу, заряженные частицы движутся по проводнику.

Среди условий, необходимых для существования электрического тока, есть пункт, предусматривающий наличие электронов. Атомы в проводящем материале имеют много этих свободных заряженных частиц, которые плавают вокруг и между атомами. Их движение является случайным, поэтому поток в каком-либо заданном направлении отсутствует. Что же нужно, чтобы существовал электрический ток?

Условия существования электрического тока включают в себя наличие напряжения. Когда оно применяется к проводнику, все свободные электроны будут двигаться в одном направлении, создавая ток.

Любопытно об электрическом токе

Интересно то, что когда электрическая энергия передается через проводник со скоростью света, сами электроны движутся намного медленнее. На самом деле, если бы вы не спеша прошли рядом с токопроводящей проволокой, ваша скорость была бы в 100 раз быстрее, чем двигаются электроны. Это обусловлено тем, что им не нужно преодолевать огромные расстояния, чтобы передавать энергию друг другу.

Прямой и переменный ток

Сегодня широко используются два разных типа тока - постоянный и переменный. В первом электроны движутся в одном направлении, с «отрицательной» стороны на «положительную». Переменный ток толкает электроны назад и вперед, изменяя направление потока несколько раз в секунду.

Генераторы, используемые на электростанциях для производства электроэнергии, предназначены для производства переменного тока. Вы, наверное, никогда не обращали внимание на то, что свет в вашем доме на самом деле мерцает, поскольку текущее направление меняется, но это происходит слишком быстро, чтобы глаза смогли это распознать.

Каковы условия существования постоянного электрического тока? Зачем нам нужны оба типа и какой из них лучше? Это хорошие вопросы. Тот факт, что мы все еще используем оба типа тока, говорит о том, что они оба служат определенным целям. Еще в XIX веке было понятно, что эффективная передача мощности на большие расстояния между электростанцией и домом была возможна лишь при очень высоком напряжении. Но проблема заключалась в том, что отправка действительно высокого напряжения была чрезвычайно опасной для людей.

Решение этой проблемы состояло в том, чтобы уменьшить напряжение вне дома, прежде чем отправлять его внутрь. И по сей день постоянный электрический ток используется для передачи на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.

Как работает электрический ток

Условия существования электрического тока включают в себя наличие заряженных частиц, проводника и напряжения. Многие ученые изучали электричество и обнаружили, что существует два его типа: статическое и текущее.

Именно второе играет огромную роль в повседневной жизни любого человека, так как представляет собой электрический ток, который проходит через цепь. Мы ежедневно используем его для питания наших домов и многого другого.

Что такое электрический ток?

Когда в цепи циркулируют электрические заряды из одного места в другое, возникает электрический ток. Условия существования электрического тока включают в себя, помимо заряженных частиц, наличие проводника. Чаще всего это провод. Схема его представляет собой замкнутый контур, в котором ток проходит от источника питания. Когда же цепь разомкнута, он не может закончить путь. Например, когда свет в вашей комнате выключен, цепь разомкнута, но когда цепь замкнута, свет горит.

Мощность тока

На условия существования электрического тока в проводнике большое влияние оказывает такая характеристика напряжения, как мощность. Это показатель того, сколько энергии используется в течение определенного периода времени.

Существует много разных единиц, которые могут использоваться для выражения данной характеристики. Однако электрическая мощность почти измеряется в ваттах. Один ватт равен одному джоулю в секунду.

Электрический заряд в движении

Каковы условия существования электрического тока? Он может принимать форму внезапного разряда статического электричества, такого как молния или искра от трения с шерстяной тканью. Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, благодаря которой горит свет и работают приборы. Большая часть электрического заряда переносится отрицательными электронами и положительными протонами внутри атома. Однако вторые в основном иммобилизованы внутри атомных ядер, поэтому работа по переносу заряда из одного места в другое проделывается электронами.

Электроны в проводящем материале, таком как металл, в значительной степени свободны для перехода от одного атома к другому вдоль их зон проводимости, которые являются высшими электронными орбитами. Достаточная электродвижущая сила или напряжение создает дисбаланс заряда, который может вызвать движение электронов через проводник в виде электрического тока.

Если провести аналогию с водой, то возьмем, к примеру, трубу. Когда мы открываем клапан на одном конце, чтобы вода попала в трубу, то нам не нужно ждать, пока эта вода проложит весь путь до ее конца. Мы получаем воду на другом конце почти мгновенно, потому что входящая вода толкает воду, которая уже находится в трубе. Это то, что происходит в случае электрического тока в проводе.

Электрический ток: условия существования электрического тока

Электрический ток обычно рассматривается как поток электронов. Когда два конца батареи соединены друг с другом с помощью металлической проволоки, эта заряженная масса через провод попадает из одного конца (электрода или полюса) батареи на противоположный. Итак, назовем условия существования электрического тока:

  1. Заряженные частицы.
  2. Проводник.
  3. Источник напряжения.

Однако не все так просто. Какие условия необходимы для существования электрического тока? На этот вопрос можно ответить более подробно, рассмотрев следующие характеристики:

  • Разность потенциалов (напряжение). Это одно из обязательных условий. Между 2 точками должна быть разница потенциалов, означающая, что отталкивающая сила, которая создается заряженными частицами в одном месте, должна быть больше, чем их сила в другой точке. Источники напряжения, как правило, не встречаются в природе, и электроны распределяются в окружающей среде достаточно равномерно. Все же ученым удалось изобрести определенные типы приборов, где эти заряженные частицы могут накапливаться, тем самым создавая то самое необходимое напряжение (например, в батарейках).
  • Электрическое сопротивление (проводник). Это второе важное условие, которое необходимо для существования электротока. Это путь, по которому перемещаются заряженные частицы. В качестве проводников выступают только те материалы, которые дают возможность электронам свободно перемещаться. Те же, у которых этой способности нет, называются изоляторами. Например, проволока из металла будет отличным проводником, в то время как ее резиновая оболочка будет превосходным изолятором.

Тщательно изучив условия возникновения и существования электрического тока, люди смогли приручить эту мощную и опасную стихию и направить ее на благо человечества.

Источник: fb.ru Образование Что такое электрический ток: направленное движение

Все знают на опыте, что такое электрический ток, но далеко не все понимают физическую природу данного явления, особенно если во время школьного курса физики этим не заинтересовались. А для многих школьников учебники ф...

Образование Что такое электрический ток?

Если внимательно проанализировать жизнь современного общества в техническом плане, то становится понятным, что привычный порядок вещей определяет электрический ток. Устройство общества во многом определяется именно им...

Бизнес Что такое электрическая таль? Таль электрическая для вертикального подъема грузов

Грузоподъемные механизмы совершенствовались веками, претерпевая изменения в контракции и наращивая силовой потенциал. На сегодняшний день передовым разработчикам удается создавать компактные и простые по конструкции у...

Здоровье Что такое электрическая ось сердца? Отклонение электрической оси сердца влево и вправо

Электрическая ось сердца (ЭОС) – это один из основных параметров электрокардиограммы. Данный термин активно применяется как в кардиологии, так и в функциональной диагностике, отражая процессы, происходящие в сам...

Образование Что такое электрическая емкость?

Часто на школьных уроках физики преподаватель, разъясняя тему электричества, прибегает к сравнению электрического тока с течением потока воды. Во многих случаях, хотя не всегда, для упрощения понимания происходящих пр...

Образование Что такое синусоидальный ток

 О том, что в проводниках бытовой проводки протекает переменный синусоидальный ток, слышали все. Но для человека, малознакомого с электротехникой, термины «синусоидальный» и, тем более, «...

Образование Что такое индукционный ток

Говоря о том, что же такое индукционный ток, нельзя не вспомнить эксперимент великого физика своего времени – Майкла Фарадея. Ведь отчасти именно благодаря его работам мы все сейчас можем пользоваться таким б...

Образование Что такое резонанс токов

При изучении основ электротехники на одном из этапов непременно рассматривается резонанс токов и напряжений. Данные явления присущи цепям переменного тока и могут являться как нежелательными, требующими их учета пр...

Образование Что такое трехфазный ток

Современный образ жизни невозможно представить без электроэнергии и благ, которые с ней связаны. Отсутствие природного газа легко компенсируется твердотопливными источниками тепла, вода также доступна, а вот без эл...

Образование Что такое электрическое напряжение

С понятием «электрическое напряжение» всем нам приходится сталкиваться практически каждый день, ведь область его использования не ограничивается одними только электроприборами. Это и грозовые разряды во вр...

monateka.com