Буква электрический заряд. Электрический заряд и его свойства
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Электрический заряд. Закон Кулона. Буква электрический заряд


Электрический заряд, теория и примеры задач

Определение и общие сведения об электрическом заряде

Обозначается электрический заряд буквой q. Существует всего два типа электрических зарядов: положительные и отрицательные. Заряды одного знака отталкиваются друг от друга, а разноименные заряды притягиваются.

Американский ученый Р. Милликен экспериментально показал, что электрический заряд является дискретной величиной. Это означает, что заряд любого тела является, целым кратным элементарному заряду. Элементарным электрическим зарядом считают заряд электрона ( Кл).

Все тела в природе могут приобретать электрический заряд. Это происходит разными способами: соприкосновением, при помощи электростатической индукции и другими способами. Любой процесс получения заряда можно свести к разделению зарядов. При этом на одном из тел возникает избыток положительных зарядов, на другом образуется избыток отрицательного заряда. Общая сумма зарядов, которую имеют при этом тела, не изменяется, заряды просто перераспределяются.

Единицей измерения электрического заряда в международной системе единиц (СИ) является кулон (Кл). Это неосновная единица системы СИ. Кулон определен через единицу силы тока. Одним кулоном называют электрический заряд, который проходит сквозь поперечное сечение проводника, при наличии в нем силы тока, равной одному амперу за одну секунду:

   

Электрический заряд. Закон сохранения заряда

Закон сохранения заряда является фундаментальным законом природы. Его смысл заключается в том, что в любой замкнутой системе алгебраическая сумма зарядов не изменяется при прохождении любых процессов внутри этой системы.

Электрический заряд не зависит от выбора системы отсчета, не зависит от того покоится ли он или движется. То есть говорят, что электрический заряд является релятивистски инвариантной величиной.

Концентрация свободных зарядов в веществе определяет, к какому виду вещество относят: к проводникам, диэлектрикам или полупроводникам.

Закон Кулона

Законом Кулона в электростатике называют закон взаимодействия неподвижных точечных зарядов. Закон установлен Ш. Кулоном в 1785 г.

Точечным называют заряд, который имеется на теле, размерами которого можно пренебречь, в сравнении с расстояниями до других тел, обладающих зарядом, и с которыми он взаимодействует. Точечный заряд – это физическая абстракция.

Формулировка закона Кулона:

   

– сила, с которой заряд действует на заряд – радиус-вектор, который соединяет и ; r- расстояние между рассматриваемыми зарядами (модуль вектора ). При этом на заряд со стороны заряда действует сила равная по модулю силе , но противоположная по направлению; – электрическая постоянная; – диэлектрическая проницаемость вещества в котором находятся рассматриваемые заряды. Закон в виде (1) записан для системы СИ.

Примеры решения задач

ru.solverbook.com

Что такое электрический заряд? Какие виды электрических зарядов существуют?

Электрический заряд - характеристика частиц и тел, определяющая их взаимодействие с электромагнитным полем. Существуют положительные и отрицательные электрические заряды. Электрический заряд тела равен алгебраической сумме всех частиц, составляющих тело. (Часто эта сумма равна нулю- тело незаряжено) . Заряд дискретен, т. е. существует наименьший элементарный электрический заряд, которому кратны заряды всех частиц в теле. Заряд выражается в кулонах. Элементарный заряд 1,6 умножить на 10 в 19-ой степени кулонов. Он часто принимается за единицу (плюс единицу или минус единицу) . Например, заряд электрона -1, протона плюс 1, иона кальция плюс 2 и т. д.

электрические заряды бывают плюсовые и минусовые

Это разность потенциалов. Положительный и отрицательный. А зачем тебе эти глупости?

заряд, это условное обозначение (= и -) q=1.6*10d-19

Величина определяющая интенсивность электромагнитного взаимодействия(-) и (+) заряженных частиц..Измеряется в (кл) кулонах.<br>И соответственно бывают два вида "положительный" (к примеру стеклянной палочки) и "отрицательный" к примеру (янтарной палочки) .А нафига тебе это?

Электрический заряд - физическая величина: <br>- характеризующая свойство тел или частиц вступать в электромагнитные взаимодействия; и <br>- определяющая значения сил и энергий при таких взаимодействиях. <br><br>Электрические заряды делятся на положительные и отрицательные.<br>

Вы дебилы?! Че вы спрашиваете ".А нафига тебе это? " Лол. Она ЕГЭ сдает! Мне тоже кстати надо!

электрический заряд физическая величина определяющая силу электросагнитного взаимодействия виды: положительный и отрицательный

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия. Эл з. обычно обозначается буквами q или Q. Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы: -Существует два рода электрических зарядов, условно названных положительными и отрицательными. -Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд. -Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения. Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной: q1 + q2 + q3 + .+qn = const. Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

touch.otvet.mail.ru

Внеклассный урок - Электрические явления

Электрические явления. Электрический заряд

 

Проводники и непроводники.

По способности передавать электрические заряды вещества делятся на проводники, полупроводники и непроводники электричества.

Проводники – это тела, которые проводят электричество (т.е. через них электрические заряды могут переходить от заряженного тела к незаряженному).

Другое определение: Вещества, в которых есть свободные электроны, являются проводниками (см.ниже Свободные электроны).

Непроводники (или диэлектрики) – это тела, которые не проводят электрические заряды.

Другое определение: Вещества, в которых удаленные электроны прочно удерживаются в своих атомах, являются непроводниками, или диэлектриками (см.ниже Свободные электроны).

Полупроводники – это тела, которые занимают промежуточное положение между проводниками и диэлектриками. У полупроводников способность проводить электрические заряды резко увеличивается при повышении температуры. К полупроводникам относятся кремний, германий, селен и др.

 

Электрическое поле.

Электрическое поле – это особый вид материи, отличающийся от вещества и свойственный заряженным телам.

Электрическая сила – это сила, с которой электрическое поле действует на внесенный в него электрический заряд.

 

Электрон.

Электрон – это частица атома, имеющая наименьший отрицательный заряд.

Заряд электрона равен –1,6 · 10-19 Кл.

Свободные электроны – это наиболее удаленные от ядра электроны, которые способны покидать свое место и свободно блуждать между атомами. Особенно слабо удерживаются удаленные электроны ядрами металлов.

 

Электрический заряд.

Электрический заряд – это одно из основных свойств электрона.

Он имеет и другое название – количество электричества.

За единицу электрического заряда принимают электрический заряд, проходящий сквозь поперечное сечение проводника при силе тока 1 А за время 1 с.

Электрический заряд обозначается буквой q. За единицу электрического заряда принят кулон (Кл).

 

Формула 1:

 

q = It

 

Формула 2:

 

          A q = ——          U

 

I – сила тока, t – время, A – работа тока на данном участке, U – напряжение.

 

Закон сохранения электрического заряда: Алгебраическая сумма электрических зарядов остается постоянной при любых взаимодействиях в замкнутой системе. 

То есть электроны не появляются из ниоткуда и не исчезают в никуда. Сколько электронов уходит от одного атома, столько же приходит к другому атому. Таким образом, в замкнутой системе сумма электронов остается неизменной.

Замкнутая система – это система, в которую извне не входят и не выходят наружу электрические заряды.

Если заряд передать от заряженного тела к незаряженному телу такого же размера, то заряд разделится пополам между двумя этими телами.

Но если второе, незаряженное тело, будет больше, чем первое, то на второе перейдет больше половины заряда.

Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдет.

 

 

 

raal100.narod.ru

Электрический заряд и его свойства

К оглавлению...

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10–6 Кл), нанокулонами (1 нКл = 10–9 Кл) и пикокулонами (1 пКл = 10–12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q1 и q2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроныи нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м2.

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м3.

Обратите внимание на то, что масса электрона равна:

me = 9,11∙10–31 кг.

 

Закон Кулона

К оглавлению...

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

k = 9∙109 м/Ф.

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называютэлектростатикой.

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

где: ε0 = 8,85∙10–12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε.

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

 

pdnr.ru

Электрический заряд

Все тела состоят из неделимых мельчайших частиц, называемых элементарными. Они имеют массу и способны притягиваться друг к другу. По закону всемирного тяготения, при увеличении расстояния между частицами сила притяжения относительно медленно убывает (она обратно пропорциональна квадрату расстояния). Сила взаимодействия частиц превосходит силу тяготения. Это взаимодействие и называют «электрический заряд», а частицы – заряженными.

Взаимодействие частиц называют электромагнитным. Оно свойственно большинству элементарных частиц. Если же его между ними нет, то говорят об отсутствии заряда.

Электрический заряд определяет степень интенсивности электромагнитного взаимодействия. Он является важнейшей характеристикой элементарных частиц, которая определяет их поведение. Обозначается буквами "q" либо "Q".

Макроскопического эталона единицы электрического заряда не существует, поскольку создать его не представляется возможным из-за его неизбежной утечки. В атомной физике за единицу принимают заряд электрона. В Международной системе единиц она устанавливается с помощью силы тока. Заряд в 1 кулон (1 Кл) обозначает, что он проходит при силе тока в 1 А за 1 с через сечение проводника. Это довольно высокий заряд. Небольшому телу сообщить его невозможно. Но в нейтральном проводнике привести в движение заряд в 1 Кл вполне реально.

Электрический заряд является скалярной физической величиной, которая характеризует способность частиц или тел вступать в электромагнитное силовое взаимодействие между собой.

При изучении взаимодействия важным является представление о точечном заряде. Он являет собой заряженное тело, размеры которого гораздо меньше расстояния от него до точки наблюдения или других заряженных частиц. При взаимодействии двух точечных зарядов расстояние между ними является гораздо большим, чем их линейные размеры.

Частицы обладают противоположными зарядами: протоны – положительным, электроны – отрицательным. Эти знаки (плюс и минус) отражают способность частиц притягиваться (при разных знаках) и отталкиваться (при одном). В природе положительные показатели и отрицательные скомпенсированы между собой.

Электрический заряд частиц одинаков по модулю, независимо от того, положительный ли он, как у протона, или отрицательный, как у электрона. Минимальный заряд называется элементарным. Им обладают все заряженные частицы. Отделить часть заряда частицы невозможно. Минимальное значение определяется экспериментально.

Электрический заряд и его свойства можно измерять с помощью электрометра. Он состоит из вращающейся вокруг горизонтальной оси стрелки и металлического стержня. Если к стрежню прикоснуться положительно заряженной палочкой, то стрелка отклонится на определенный угол. Это объясняется распределением заряда по стрелке и стержню. Поворот стрелки обусловлен действием силы отталкивания. При увеличении заряда возрастает и угол отклонения от вертикали. То есть он показывает значение заряда, который передается стрежню электрометра.

Выделяют следующие свойства электрического заряда. Они могут быть положительными и отрицательными (выбор названий случаен), которые притягиваются и отталкиваются. Заряды способны передаваться при контакте от одних тел другим. Одно тело в разных условиях может обладать разными зарядами. Важным свойством является дискретность, что означает существование наименьшего, универсального заряда, которому кратны аналогичные показатели любых тел. Внутри замкнутой системы алгебраическая сумма всех зарядов остается постоянной. В природе заряды одного знака не возникают и не исчезают одновременно.

fb.ru

Электрический заряд

Электрический заряд– физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

Элементарный электрический заряд– минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

e=Кл

Тело имеет заряд, значит имеет лишние или недостающий электроны. Такой заряд обозначаетсяq=ne. (он равен числу элементарных зарядов).

Наэлектризовать тело– создать избыток и недостаток электронов. Способы:электризация трениемиэлектризация соприкосновением.

Точечный заряд – заряд тела, которое можно принять за материальную точку.

Пробный заряд() – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

Закон сохранения заряда:в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой.

Закон Кулона:силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры.

, гдеФ/м, Кл2/нм2– диэлектр. пост. вакуума

- относит. диэлектрическая проницаемость (>1)

- абсолютная диэлектрическая прониц. среды

Электрическое поле– материальная среда, через которую происходит взаимодействие электрических зарядов.

Свойства электрического поля:

  1. Электрическое поле существует вокруг любого заряда. Если заряд неподвижен – поле электростатическое.

  2. Электрическое поле действует на любой помещённый в него заряд согласно закону Кулона. Обнаружить электрическое поле можно только по его действию на другие заряды.

  3. Электрическое поле существует в любой среде и распространяется с конечной скоростью: м/с.

  4. Электрическое поле не имеет чётких границ. Действие его уменьшается при увеличении расстояния от заряда, его создающего.

Характеристики электрического поля:

  1. Напряжённость(E) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

Измеряется в Н/Кл.

Направление – такое же, как и у действующей силы.

Напряжённость не зависитни от силы, ни от величины пробного заряда.

Суперпозиция электрических полей: напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

Графическиэлектронное поле изображают с помощью линий напряжённости.

Линия напряжённости– линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

Свойства линий напряжённости: они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

Виды полей:

  • Однородное электрическое поле– поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

+ -

+ -

+ -

+ -

  • Неоднородное электрическое поле– поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

  • Постоянное электрическое поле– вектор напряжённости не изменяется.

  • Непостоянное электрическое поле– вектор напряжённости изменяется.

  1. Работа электрического поля по перемещению заряда.

, гдеF– сила,S– перемещение,- угол междуFиS.

Для однородного поля: сила постоянна.

Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

Для неоднородного поля:

  1. Потенциал электрического поля– отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

-потенциал– энергетическая характеристика поля. Измеряется в Вольтах

Разность потенциалов:

Если , то

, значит

-градиент потенциала.

Для однородного поля: разность потенциалов – напряжение:

. Измеряется в Вольтах, приборы – вольтметры.

Электроёмкость– способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

.

Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

, гдеr– размер,- проницаемость среды вокруг тела.

Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

Конденсатор– устройство для накопления заряда. Электроёмкость:

Плоский конденсатор– две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

, гдеS– площадь пластин,d– расстояние между пластинами.

Энергия заряженного конденсатораравна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

Перенос малого заряда , напряжение измениться на, совершится работа. Так как, а С =const,. Тогда. Интегрируем:

Энергия электрического поля:, гдеV=Sl– объём, занимаемый электрическим полем

Для неоднородного поля:.

Объёмная плотность электрического поля:. Измеряется в Дж/м3.

Электрический диполь– система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя -l).

Основная характеристика диполя – дипольный момент– вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается. Измеряется в Кулон-метрах.

Диполь в однородном электрическом поле.

На каждый из зарядов диполя действуют силы: и. Эти силы противоположно направлены и создают момент пары сил – вращающий момент:, где

М – вращающий момент F– силы, действующие на диполь

d– плечо силl– плечо диполя

p– дипольный моментE– напряжённость

- угол междуpи Еq– заряд

Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы pи Е будут параллельны и однонаправлены.

Диполь в неоднородном электрическом поле.

Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

-градиент напряжённости. Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

Собственное поле диполя.

Но . Тогда:

.

Пусть диполь находится в точке О, а его плечо мало. Тогда:

.

Формула получена с учётом:

Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

Диэлектрики в электрическом поле.

Диэлектрик– вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

Классы диэлектриков:

  • с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

  • с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

  • кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

Поляризация– процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

Способы поляризации:

1 способ – электрохимическая поляризация:

На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10-3-10-2с.

2 способ – ориентационная поляризация:

На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10-13-10-7с. Частота 10 МГц.

3 способ – электронная поляризация:

Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10-16-10-14с. Частота 108МГц.

4 способ – ионная поляризация:

Две решётки (NaиCl) смещаются относительно друг друга.

Время релаксации: =10-8-10-3с. Частота 1 КГц

5 способ – микроструктурная поляризация:

Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

Время релаксации: =10-8-10-3с. Частота 1 КГц

Числовые характеристики степени поляризации:

    1. вектор поляризованности . Измеряется в Кл/л

    2. относительная диэлектрическая проницаемость раз

    3. Дисперсия – зависимость от частоты.

Электрический ток– это упорядоченное движение свободных зарядов в веществе или в вакууме.

Условия существования электрического тока:

  1. наличие свободных зарядов

  2. наличие электрического поля, т.е. сил, действующих на эти заряды

Сила тока– величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

Измеряется в Амперах.

n– концентрация зарядов

q– величина заряда

S– площадь поперечного сечения проводника

- скорость направленного движения частиц.

Скорость движения заряженных частиц в электрическом поле небольшая – 7*10-5м/с, скорость распространения электрического поля 3*108м/с.

Плотность тока– величина заряда, проходящего за 1 секунду через сечение в 1 м2.

. Измеряется в А/м2.

- сила, действующая на ион со стороны эл поля равна силе трения

- подвижность ионов

- скорость направленного движения ионов =подвижность, напряжённость поля

Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

studfiles.net

Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

· Существует два рода электрических зарядов, условно названных положительными и отрицательными.

· Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

· Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + ... +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд eявляется квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке.

N32

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собойвекторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию назаряженные тела.

Энергия электрического поля

Основная статья: Электромагнитная энергия

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического поля.

Однородное поле

Направление линий напряжённости между двумя разнозаряженными пластинами

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

N33

При перемещении тела между двумя точ­ками в гравитационном поле работа силы тяжести не зависит от формы траектории его движения. Силы гравитационного и электрического взаи­модействия имеют одинаковую зави­симость от расстояния, векторы гра­витационных и кулоновских сил при взаимодействии точечных тел направлены по прямой, соединяющей взаимодействующие тела. Поэтому можно предположить, что при перемещении заряда в электростатическом поле из одной точки в другую работа сил электрического поля не зависит от формы траектории. Это предположение следует из закона сохранения энергии. Пусть пробный заряд q перемещается в электрическом поле из точки M в точку N по траектории MBN . При этом поле совершает работу А1. Вернем теперь пробный заряд в начальную точку М по траектории NCM. При этом внешние силы совершат работу А2 1, а работа поля будет равна А2 = -А2 1. Суммарная работа Асум = А1 + А2. После того как заряд вернется в начальную точку, в системе заряд – электрическое поле никаких изменений не произошло, следовательно, энергетическое состояние системы не изменилось. А это означает, что поле не совершило никакой работы, т. е. Асум = 0.

Таким образом, работа электро­статических (кулоновских) сил по любой замкнутой траектории равна нулю. Иными словами, работа по перемещению электрического заряда между двумя точками электрическо­го поля не зависит от формы траек­тории

Работа и потенциальная энергия.

Если работа не зависит от формы траектории, иными словами, если по­ле сил консервативное, то работу можно представить как разность по­тенциальных энергий в начале и кон­це траектории:

A = Wp1 - Wp2 (2)

(Мы будем в электростатике энергию обозначать буквой W, а не Е, по­скольку буквой Е мы обозначаем на­пряженность поля.)

Как и в общем случае, потен­циальная энергия взаимодействия зарядов определяется с точностью до произвольного постоянного слагаемого, значение которого можно задать так, чтобы упростить решение задачи. Напомним, что точно так же обстоит дело с потенциальной энер­гией гравитационного взаимодей­ствия.

 

N34

lektsia.com