Вл электрика расшифровка. Как определить напряжение ЛЭП по виду изоляторов ВЛ?
SET 8-861-260-24-40, 8 (989) 212 27 02
sale@les66.ru
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Перевод воздушных линий под землю. Вл электрика расшифровка


Как определить напряжение ЛЭП по виду изоляторов ВЛ?

Итак, перед вами стоит вопрос: "Сколько вольт в ЛЭП?" и нужно узнать напряжение в линии электропередач в киловольтах (кВ). Стандартные значения можно определить по изоляторам ВЛ и внешнему виду проводов ЛЭП на столбах.

Для повышения эффективности передачи электроэнергии и снижения потерь в воздушных и кабельных линиях, электрические сети разбивают на участки с разными классами напряжения ЛЭП.

Классификация ЛЭП по напряжению

  1. Низший класс напряжения ЛЭП – до 1 кВ;
  2. Средний класс напряжения – от 1 кВ до 35 кВ;
  3. Высокий класс напряжения – от 110 кВ до 220 кВ;
  4. Сверхвысокий класс ВЛ – от 330 кВ до 500 кВ;
  5. Ультравысокий класс ВЛ – от 750 кВ. 

Сколько вольт опасно для человека?

Высокое напряжение воздействует на человека опасным для здоровья образом, так как ток (переменный или постоянный) способен не только поразить человека, но и нанести ожоги. Сеть 220 в, 50 Гц уже достаточно опасна так, как считается, что постоянное или переменное напряжение, которое превышает 36 вольт и ток 0,15А убивает человека. В связи с этим, в ряде случаев даже ток осветительной сети может оказаться смертельным для человека. Поэтому высоковольные провода подвешивают на определенной высоте на ЛЭП опорах. Высота столба ЛЭП зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п

С ростом рабочего напряжения в проводах ЛЭП увеличиваются размеры и сложность конструкций опор электропередач. Если для передачи напряжения 220/380 В используются обычные железобетонные (иногда деревянные) опоры с фарфоровыми линейными изоляторами, то воздушные линии мощность 500 кВ имеют внешний вид совсем иной. Опора ВЛ 500 кВ представляет собой сборную металлическую П-образную конструкцию высотой до нескольких десятков метров, к которым три провода крепятся с помощью траверс посредством гирлянд изоляторов. В воздушных линиях электропередач максимального напряжения ЛЭП 1150 кВ для каждого из трех проводов предусмотрена отдельностоящая металлическая опора ЛЭП.

Важная роль при прокладке высоковольтных ЛЭП принадлежит типу линейных изоляторов, вид и конструкция которых зависят от напряжения в линии электропередач. Поэтому напряжение ЛЭП легко узнать по внешнему виду изолятора ВЛ.

 Штыревые фарфоровые изоляторы используются для подвешивания самых легких проводов в воздушных линиях небольшой мощности 0,4-10 кВ. Штыревые изоляторы этого типа имеют значительные недостатки, основными из которых являются недостаточная электрическая прочность (ограничение напряжения ЛЭП 0,4-10 кВ) и неудовлетворительный способ закрепления на изоляторе проводов ВЛ, создающие в эксплуатации возможность повреждений проводов в местах их креплений при автоколебаниях подвески. Поэтому в последнее время штыревые изоляторы полностью уступили место подвесным. Изоляторы ВЛ подвесного типа, применяющиеся у нас в контактной сети, имеют несколько иной внешний вид и размеры.

При напряжении в ЛЭП свыше 35 кВ используются подвесные изоляторы ВЛ, внешний вид которых представляет собой фарфоровую или стеклянную тарелку-изолятор, шапки из ковкого чугуна и стержня. Для обеспечения необходимой изоляции изоляторы собирают в гирлянды. Размеры гирлянды зависят от напряжения линии и типа изоляторов высоковольтных линий.

Приблизительно определить напряжение ЛЭП, мощность линии по внешнему виду, простому человеку бывает трудно, но, как правило, это можно сделать простым способом — точно посчитать количество и узнать сколько изоляторов в гирлянде крепления провода (в ЛЭП до 220 кВ), или число проводов в одной связке («пучке») для линий от 330 кВ и выше..

Сколько вольт в высоковольтных проводах ЛЭП?

 Электрические линии малого напряжения - это ЛЭП-35 кВ (напряжение 35000 Вольт) легко определить самому визуально, т.к. они имеют в каждой гирлянде небольшое количество изоляторов - 3-5 штук.

ЛЭП 110 кВ - это уже 6-10 высоковольтных изоляторов в гирляндах, если число тарелок от 10-ти до 15-ти, значит это ВЛ 220 кВ.

Если вы можете видеть, что высоковольтные провода раздваиваются (расщепление) тогда — ЛЭП 330 кВ, если количество проводов подходящих на каждую траверса ЛЭП уже три (в каждой высоковольтной цепи) — то напряжение ВЛ 500 кВ, если количество проводов в связке четыре - мощность ЛЭП 750 кВ.

 Для более точного определения напряжения ВЛ обратитесь к специалистам в местное энергетическое предприятие.

Количество изоляторов на ЛЭП (в гирлянде ВЛ)

Количество подвесных изоляторов в гирляндах ВЛ на металлических и железобетонных опорах ЛЭП в условиях чистой атмосферы (с обычным полевым загрязнением).

Тип изолятора по ГОСТ ВЛ 35 кВ ВЛ 110 кВ ВЛ 150 кВ ВЛ 220 кВ ВЛ 330 кВ ВЛ 500 кВ
ПФ6-А (П-4,5) 3 7 9 13 19 -
ПФ6-Б (ПМ-4,5) 3 7 10 14 20 -
ПФ6-В (ПФЕ-4,5) 3 7 9 13 19 -
(ПФЕ-11) - 6 8 11 16 21
ПФ16-А - 6 8 11 17 23
ПФ20-А (ПФЕ-16) - - - 10 14 20
(ПФ-8,5) - 6 8 11 16 22
(П-11) - 6 8 11 15 21
ПС6-А (ПС-4,5) 3 8 10 14 21 -
ПС-11 (ПС-8,5) 3 7 8 12 17 24
ПС16-А - 6 8 11 16 22
ПС16-Б - 6 8 12 17 24
ПС22-А - - - 10 15 21
ПС30-А - - - 11 16 22

sbk.ltd.ua

Энергетика для начинающих. Часть вторая. — Энергодиспетчер

[note color=»#e5e5e5″]

Внимание, статья участвовала в конкурсе,  сохранена авторская стилистика и орфография.

[/note]Распределение электроэнергии.

Рис 1

   Производство электрической энергии мы рассмотрели в первой части статьи. Во второй мы узнаем, почему же электростанции работают параллельно, в объединенной энергосистеме, а не отдельно, каждая на своего потребителя. Так же посмотрим на элементы энергосистем, без которых они не могут существовать.

Рис 2,3

  Понять, почему же энергосистемы работают параллельно, нам поможет суточный график производства и потребления электроэнергии, который был взят с сайта «СО ЕЭС». На верхнем графике показана частота в ЕЭС России, а точнее в объединенных энергосистемах Центра, Северо-запада, Юга, Средней Волги, Урала и Сибири, а на нижнем ОЭС Востока, которая хоть и имеет электрические связи с остальной энергосистемой, но работает не синхронно с ЕЭС России.

  По оси 0Х откладывается время в часах, а по оси 0У – частота электрического тока в герцах. Шаг точек, по которым был построен график – 1 час.

  Частота является показателем равенства производства и потребления активной энергии. Если частота больше 50 Гц, то энергии производиться больше, чем потребляется. Если частота меньше 50 Гц, то наоборот, энергии производиться меньше, чем нужно. Частота – это один из самых важных показателей энергосистемы. Именно при номинальной частоте все движущиеся механизмы – генераторы, двигатели работают в наиболее экономичном режиме.

  В России принят стандарт, по которому частота не должна выходить за пределы в 50+-0.05 Гц. Как видите, осуществить такую точную уставку в несинхронной зоне не получается. Плюс не забываем, что мощность нагрузки меняется каждую секунду, а график построен с интервалом в час.

  Если частота опустится ниже 48,5 Гц, а к тому времени не удалось поднять мощность генерации (такое бывает при аварийном отключении крупного энергоблока электростанции), то начинает работу АЧР (Автоматическая частотная разгрузка), которая по нескольким ступеням, отключает потребителей. Ее главная задача – остановить снижение частоты в энергосистеме, т.к. генераторы, вращаются в электрическом поле с частотой, кратной частоте системы, а на низких частотах возможно появления сильных  вибраций. К тому же уменьшается производительность питательных и прочих насосов на электростанциях, и приходиться вынужденно снижать мощность генерации, т.к. уменьшается количество теплоносителя – воды.

  Но отключить можно не каждого потребителя, поэтому все они были разделены на 3 категории. Третья – это потребитель, который без проблем переживет сутки без электроэнергии. К этой категории относится население. Резерв не обязателен. Именно на эту категорию нацелена АЧР.

  Вторая – более ответственные потребители, которые будут иметь большой ущерб, брак продукции или экономические потери при отключении. Поэтому таких потребителей можно отключать только на время, необходимое для ручного или автоматического ввода резерва. Таким образом, вторая категория не должна отключаться действием АЧР. Обязательно есть резерв.

  Первая категория. Самая ответственная нагрузка. При отключении электроэнергии возможны человеческие жертвы, техногенные катастрофы и прочие прелести человеческой цивилизации. Поэтому эта категория может быть отключена только на время, необходимое для автоматического включения резерва. Наличие резерва обязательно. Кроме того в первой категории выделяют еще одну – особую. Эта категория должна иметь третий резервный источник питания для безопасного завершения работы. Сюда, например, относятся АЭС.

  Итак, первая причина объединения энергосистем – поддержание баланса производства и потребления. Вторая причина – при параллельной работе станций можно держать на каждой из них меньший резерв мощности. Он бывает:

 1) Вращающийся. Это агрегаты электростанций, работающие в системе на мощности, меньшей максимальной. В среднем, это 50-80 %. В случае необходимости быстро поднять генерацию, в первую очередь использую именно этот резерв.

 2)  Горячий. К нему относятся агрегаты, которые не включены в систему, но при первой же необходимости могут быть включены за короткое время. В основном, к этому резерву стараются отнести ГЭС, т.к. та тепловых станциях такой режим работы крайне невыгоден.

 3)   Холодный. Агрегаты можно будет запустить в работу в течение довольно долгого времени.

Третья причина – в ЕЭС можно распределять нагрузку между станциями, для наиболее выгодной экономически работы как самих станций, так и системы. Не стоит забывать, что для ТЭЦ и АЭС наиболее выгодно и безопасно использовать базовый ражим работы. ГРЭС, ГАЭС и, частично, ТЭС нужно активнейшим образом привлекать к регулированию частоты.

Кроме того, мощность нагрузки меняется в течение суток и года. Традиционно в России суточный максимум нагрузки приходится на 11-00 и 19-00, а годовой – на зимнее время года. В течении ночи нагрузка минимальна, что требует разгрузки электростанций.

 Основными элементами энергосистем являются сети и подстанции.

  В России для сетей переменного тока принята стандартная шкала напряжений: 0.4, 3, 6, 10, 20, 35, 110, 220, 330, 500, 750 кВ. В распределительных сетях городов, в основном, используют напряжения 0.4, 6, 10, 110 кВ; и трансформацию 110/6(10) кВ, а затем 6(10)/0.4 кВ. В сельской местности, в основном, трансформация 35/6(10) кВ. Системные сети, из которых и состоит ЕЭС России, исторически разделились на 2 условные части: ОЭС С-З, часть ОЭС Центра (Брянск, Курск, Белгород), где использую шкалу 110 – 330 – 750 кВ, и остальную, где есть шкала 110 – 220 – 500 кВ. На Кавказе распространена шкала 110 – 330 – 500 кВ.

  Сегодня при проектировании новых сетей используют ту шкалу напряжения, которая исторически сложилась в регионах.

  Сети разных напряжений можно «узнать» по внешнему виду практически со 100% вероятностью, если они исполнены в  виде ВЛ. Не забываем, что система электроснабжения трехфазная, поэтому одна цепь содержит 3 провода (3 фазы). В сетях 0.4 кВ 4 провода (3 фазы и ноль).

1)      ВЛ 6 (10) кВ. Один – два изолятора.

Рис 4

 

2)      ВЛ 35 кВ. 3 – 5 изоляторов в гирлянде.

Рис 5

3)      ВЛ 110 кВ 8 -10 изоляторов в гирлянде.

Рис 6

4)      ВЛ 220 кВ 12 – 15 изоляторов в гирлянде.

Рис 7

Далее ВЛ можно различать по другим признакам

5)      ВЛ 330 кВ. Расщепление фазных проводников на 2 провода.

Рис 8

6)      ВЛ 500 кВ. Расщепление фазных проводников на 3 провода.

Рис 9

7)      ВЛ 750 кВ. Расщепление фазных проводников на 4-5 проводов.

Рис 10

  Вы скажете: «А зачем проводники фаз расщепляют?» Расщепление – это один из методов борьбы с «Коронным разрядом» или попросту – короной.  Корона – это самостоятельный газовый разряд, происходящий в резко неоднородных полях. В процессе коронирования воздух вокруг провода нагревается и ионизируется, на это тратиться энергия, к тому же возникают радиопомехи и шумовое загрязнение. Поэтому всячески стараются не допустить резких изменений электромагнитного поля —  устанавливают минимальное эквивалентное сечение проводов, экраны на изоляторах и т.д.

Рис 11

  Вы могли заметить, что провода крепятся к опорам по-разному. Это связано с функциями опор. Все они делятся на:

  1)      Анкерные. Эти опоры держат тяжение проводов, а так же их вес и другие воздействия. Расстояние между двумя соседними анкерными опорами называется анкерным пролетом. Анкерные опору позволяют делать повороты линий, их заходы на ПС, а так же уменьшают зону аварии при обрыве проводов. Соседние анкерные пролеты соединяются электрически с помощью перемычки – т.н. шлейфа.

 2)      В промежутке между анкерными пролетами расположены промежуточные опоры. Они держат вес проводов и ветровые воздействия на провод, и саму опору. По длине линии их должно быть не менее 70% от всех опор.

 3)      Специальные опоры

Рис 12

  Служат для преодолевания каких-либо преград, например, водохранилища. В отличие от предыдущих типов опор, специальные опоры обычно подбирают под каждый отдельный случай и не выпускаются серийно.

  Итак, линии, напряжением выше 1 кВ, какие бы они не были – кабельные или воздушные, приходят на ПС – подстанции. Они состоят из силового оборудования – систем и секций шин, силовых и измерительных трансформаторов, выключателей; устройств РЗиА, средств связи и т.д.

  Рассмотрим некоторые элементы ПС.

1)Силовой трехфазный трансформатор.

Рис 13

Служит для преобразования одного класса напряжения в другое. Трансформаторы бывают повышающими и понижающими. Трехфазный трансформатор – это фактически 3 однофазных трансформатора, имеющих общий магнитопровод.

  При коэффициентах трансформации меньше 3 используют автотрансформаторы, у которых вторичная обмотка является частью первичной, то есть они имеют не только магнитную, но и электрическую связь. Это повышает КПД трансформации.

2)    Измерительные трансформаторы.

Рис 14, Рис 14,1

  Трансформаторы тока. Включаются в цепь, как и амперметр, последовательно. С их помощью меряют токи, это один из основных элементов РЗиА. Особенность работы состоит в том, что ни при каких условиях нельзя разрывать цепь вторичной обмотки, иначе ТТ выйдет из строя, при этом обязательно будут голливудские эффекты…

  Трансформаторы напряжения. Включаются, как и вольтметр, параллельно. От вторичных обмоток помимо защит, питаются непосредственно силовые цепи РЗиА.

3) Выключатели.

                         

Рис 15, 15.1, 15.2  3) Выключатели. Они «немного» отличаются от тех выключателей, что мы привыкли видеть дома. Главные компоненты выключателя – это корпус, привод контактов, ножи контактов и дугогасительная камера. Служат выключатели для отключения токов нагрузки и КЗ. При этом образуется электрическая дуга, которая тем мощнее, чем больше ток в цепи.

4)Разъединители.

Рис 16   Служат, в основном, для создания видимого разрыва для выполнения ремонтных работ и для оперативных переключений, а так же для заземления того, что к ним подключено.

5)   Системы и секции шин

Рис 17

  Системы и секции шин составляют основу распределительного устройства ПС. Системы шин разделяют на секции для того, чтобы при отказе выключателя присоединения была погашена только одна секция, а не вся система шин. Кроме того, в распределительных сетях секции работают разомкнуто, и в случае потери питания одной секции она сможет получить его с другой секции. Система шин отличается от секции тем, что присоединение на секцию «жесткое», то есть оно может получать питание только от этой секции. А вот если присоединение заведено на систему, то оно может получать питание от разных секций.

6)       Распределительное устройство. Оно служит для распределения электрической энергии на одном классе напряжения. Делятся на: открытые (ОРУ)

Рис 18

закрытые (ЗРУ)

Рис 19

комплектные (КРУ)

Рис 20

Вот и все! На этом я заканчиваю свою басню, надеюсь, вам было интересно !

Автор: студент группы ЭС-11б ЮЗГУ Агибалов Сергей

operby.com

Линия электропередач - это... Что такое Линия электропередач?

Линии электропередачи

Линии электропередачи город Шарья

Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии.

Согласно МПТЭЭП (Межотраслевые правила технической эксплуатации электроустановок потребителей) Линия электропередачи — Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии.

Различают воздушные и кабельные линии электропередачи.

По ЛЭП также передают информацию при помощи высокочастотных сигналов, по оценкам в России используется порядка 60 тыс. ВЧ-каналов по ЛЭП. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Состав ВЛ

Документы, регулирующие ВЛ

Конструкция ВЛ, ее проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНИП).

Классификация ВЛ

По роду тока
  • ВЛ переменного тока
  • ВЛ постоянного тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (напр., для связи энергосистем, питания контактной сети и др.) используют линии постоянного тока.

Для ВЛ переменного тока принята следующая шкала классов напряжений: переменное — 0.4, 6, 10, (20), 35, 110, 150, 220, 330, 400 (Выборгская ПС - Финляндия), 500 , 750 и 1150 кВ ; постоянное - 400 кВ.

По назначению
  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем — к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов — соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям
По напряжению
  • ВЛ до 1 кВ (ВЛ низшего класса напряжений)
  • ВЛ выше 1 кВ
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110—220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330—500 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ 750 кВ и выше (ВЛ ультравысокого класса напряжений)

Это группы существенно различаются в основном требованиями в части расчётных условий и конструкций.

По режиму работы нейтралей в электроустановках
  • Трехфазные сети с незаземленными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с большим сопротивлением). В России такой режим нейтрали используется в сетях напряжением 3-35кВ с малыми токами однофазных замыканий на землю.
  • Трехфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В России используется в сетях напряжением 3-35кВ с большими токами однофазных замыканий на землю.
  • Трехфазные сети с эффективно-заземленными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220кВ, т.е. сети в которых применяются трансформаторы, а не автотрансформаторы, требующие обязательного глухого заземления нейтрали по режиму работы.
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1кВ, а так же сети напряжением 220кВ и выше.
По режиму работы в зависимости от механического состояния
  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса — положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак обозначает центр расположения опоры в натуре на трассе строящейся ВЛ.
  • Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор.
  • Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузки от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный (между двумя соседними промежуточными опорами) и анкерный (между анкерными опорами) пролёты. Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода — вертикальное расстояние от низшей точки провода в пролёте до пересекаемых инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) —называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные
к кабельным сооружениям относятся
  • Кабельный туннель — закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.
  • Кабельный канал — закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта — вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж — часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол — полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок — кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера — подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.
  • Кабельная эстакада — надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея  — надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-маслянная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче ее на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различного рода разрядные явления.

Другой важной величиной, влияющей на экономичность ЛЭП, является cos(f) — величина, характеризующая отношение активной и реактивной мощности.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Эти потери зависят во многом от погодных условий (в сухую погоду потери меньше, соответственно в дождь, изморось, снег эти потери возрастают) и расщепления провода в фазах линии. Потери на корону для линий различных напряжений имеют свои значения (для линии ВЛ 500кВ среднегодовые потери на корону составляют около ΔР=9,0 -11,0 кВт/км). Так как коронный разряд зависит от напряжённости на поверхности провода, то для уменьшения этой напряжённости в воздушных линиях свервысокого напряжения применяют расщепление фаз. То есть в место одного провода применяют от трёх и более проводов в фазе. Распологаются эти провода на равном расстоянии друг от друга. Получается эквивалентный радиус расщеплённой фазы, этим уменьшается напряжённость на отдельном проводе, что в свою очередь уменьшает потери на корону.

См. также

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ. / Магидин Ф. А.; Под ред. А. Н. Трифонова. — М.: Высшая школа, 1991. — 208 с ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. - Л.: ЛПИ им. М.И. Калашникова, 1980. - 76 с. УДК 621.311.2(0.75.8)

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Воздушная линия электропередачи - это... Что такое Воздушная линия электропередачи?

 Воздушная линия электропередачи (ВЛ) – устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам или кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т. п.). За начало и конец ВЛ принимаются линейные порталы или линейные вводы РУ, а для ответвлений – ответвительная опора и линейный портал или линейный ввод РУ.

МПБЭЭ, термины.

С точки зрения питания потребителей ВЛ делятся на две категории: тупиковые – линии, получающие напряжение с одной стороны и питающие подстанции, к шинам которых не подключены электростанции, а также линии, получающие напряжение с одной стороны и питающие подстанции, к шинам которых подключены мелкие электростанции, оборудованные делительной автоматикой; транзитные .

Коммерческая электроэнергетика. Словарь-справочник. — М.: Энас. В.В. Красник. 2006.

  • ВЛ
  • Возмездный договор

Смотреть что такое "Воздушная линия электропередачи" в других словарях:

  • воздушная линия электропередачи — ВЛ Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов. [ГОСТ 24291 90] воздушная линия электропередачи Устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным… …   Справочник технического переводчика

  • Воздушная линия электропередачи — (ВЛ) – линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов. [ГОСТ 24291 90] Рубрика термина: Энергетическое оборудование Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ВОЗДУШНАЯ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ — (линия электропередачи, ЛЭП сооружение, предназначенное для передачи на расстояние электрической энергии от электростанций к потребителям; размещена на открытом воздухе и выполнена обычно неизолированными проводами, которые подвешены с помощью… …   Большая политехническая энциклопедия

  • Воздушная линия электропередачи — (ВЛ) устройство для передачи и распределения электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам, стойкам на инженерных сооружениях (мостах, путепроводах и т.п.) …   Официальная терминология

  • воздушная линия электропередачи — 51 воздушная линия электропередачи; ВЛ Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов 601 03 04 de Freileitung en overhead line fr ligne aérienne Источник: ГОСТ 24291 90: Электрическая часть… …   Словарь-справочник терминов нормативно-технической документации

  • Воздушная линия электропередачи — Линии электропередачи Линии электропередачи город Шарья Линия электропередачи (ЛЭП)  один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии. Согласно МПТЭЭП (Межотраслевые правила …   Википедия

  • Воздушная линия электропередачи (ВЛ) — English: Overhead line Линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов (по ГОСТ 24291 90) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • Воздушная линия — установленная линия, определяющая пункты, между которыми осуществляются регулярные воздушные перевозки. Источник: Руководство по грузовым перевозкам на внутренних воздушных линиях Союза ССР 3.1 воздушная линия; ВЛ: Устройство для передачи… …   Словарь-справочник терминов нормативно-технической документации

  • Линия электропередачи, воздушная — Воздушная линия электропередачи Линия электропередачи, в которой неизолированные провода подвешивают на столбах или опорах с помощью линейной арматуры и изоляторов над землей Смотреть все термины ГОСТ 17613 80. АРМАТУРА ЛИНЕЙНАЯ. ТЕРМИНЫ И… …   Словарь ГОСТированной лексики

  • линия электропередачи вдольтрассовая — Воздушная линия электропередачи, используемая для обеспечения электрической энергией средств электрохимзащиты и электрооборудования линейной части магистральных нефтепроводов. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный… …   Справочник технического переводчика

commercial_electric_power.academic.ru

Перевод воздушных линий под землю

Линии электропередачи подразделяются на два основных вида – воздушные (ВЛЭП), провода которых подвешены над землей или над водой, иподземные(или подводные) КЛЭП, в этом случае силовые кабели прокладываются непосредственно под землей или в специально созданных для этого тоннелях.

Один из недостатков воздушных линий (ВЛЭП) – несмотря на свою «воздушность», они занимают много места.

С точки зрения энергетического законодательства существует запрет на строительство в охранной зоне ЛЭП, которая обычно составляет до 25 метров. Перекладка ЛЭП под землю сокращает охранную зону до одного метра.

На территории промышленных предприятий, в мегаполисах и больших городах ввиду плотной застройки прокладка воздушной линий электропередачи представляет собой трудности, и несмотря на то, что стоимость подземных кабельных линий в 2-3 раза выше стоимости воздушных линий электропередачи, основным средством передачи электрической энергии становятся все-таки подземные высоковольтные кабельные линии на напряжение 220 кВ и выше, что делает их основой современной энергосистемы города.

Подземная линия электропередачи состоит из одного или нескольких кабелей, соединительных и концевых муфт (заделок) и крепежных деталей, а ЛЭП, содержащая маслонаполненный или газонаполненный кабель, снабжается также подпитывающей системой и сигнализацией давления масла (газа). Прокладываются кабели в земле в траншеях на глубине 0,8-1м, а также в кабельных каналах, блоках или тоннелях. Экономичной является подземная прокладка кабелей (до шести кабелей в одной траншее при расстоянии между кабелями 0,2-0,3 м, не менее 20 кабелей в одном тоннеле).

Однако пропускная способность подземных кабельных линий ограничивается условиями прокладки, и вследствие технических причин длина кабельных линий не превышает 10-12 км. Вследствие этого подземные ЛЭП в настоящее время менее распространены.

В России первые подземные кабельные линии (радиус действия – 1 км, напряжение – 2 кВ) появились в конце 70-x годов XIX в и использовались главным образом в системах электроосвещения частных домов. Современные технологии проектирования и производства позволяют стать им эффективной альтернативой воздушных линий электропередачи.

В пользу применения высоковольтных кабельных линий говорит то, что они обладают уникальными свойствами по передаче энергии, а именно:

  • невидимы на поверхности земли,
  • не требуют глубокого закапывания,
  • не излучают электрических полей,
  • могут быть спроектированы так, чтобы не излучать магнитные поля,
  • имеют улучшенные характеристики по потере мощности и высокую стойкость при аварийных нагрузках.

Подземные кабели можно использовать в местах плотной застройки, переходов через реки и в сложных геологических условиях, там, где требуется сохранение ландшафтов, значимых строений, в местах для будущего строительства и т.п.

Подземные линии ЛЭП менее восприимчивы к тяжелым погодным условиям, таким как: штормы, землетрясения. Воздушные ЛЭП более подвержены износу, чем подземные. Работа последних не будет зависеть от ураганов, снегопадов и так далее, соответственно, срок службы кабельных линий намного дольше обычных.

Современные кабельные сети используют поперечно сшитый полиэтилен (XLPE) в качестве основного изоляционного материала, который уже 20 лет подтверждает свою высокую надежность. Кабельные линии из сшитого полиэтилена более надежны и удобны в эксплуатации, обладают более высокой пропускной способностью, максимально защищены от внешних атмосферных воздействий и охотников за цветным металлом. В будущем это даст возможность сократить затраты на обслуживание и ремонт линий.

Гарантийный срок службы кабеля составляет 10 лет, что сопоставимо с опытом применения кабельных линий за рубежом. Поскольку кабель напряжением 330 кВ и даже 220 кВ в России пока не производится, в ближайшей перспективе при строительстве подземных кабельных ЛЭП будет применяться продукция зарубежных компаний.

Подземные кабели содержат большое количество меди, наиболее токопроводящего металла, который работает при более низких температурах, в результате чегона 30% снижаются потери при высоких нагрузках по сравнению с воздушными линиями электропередачи, а следовательно, повышается рентабельность всей энергосистемы.

Сочетание этих качеств позволяет снабжать электроэнергией потребителей с максимальной эффективностью, что особенно важно в целях сохранения окружающей среды и экономии энергоресурсов.

Новые технологии сочленения участков кабеля и прокладки его в грунте позволяют реализовывать проекты создания энергетических систем в течение нескольких месяцев при том, что раньше на это уходили годы. В тех местах, где невозможно прокопать кабельную траншею или канал, кабели монтируются в туннелях. В некоторых случаях использование уже существующих туннелей позволяет снизить стоимость работ.

Подземные кабельные сети не только исчезают из визуального пространства, но и значительно сокращают стоимость обслуживания по сравнению с воздушными линиями. Для сокращения времени аварийного отключения операторы энергетических систем могут измерять температуру высоковольтного кабеля по всей его длине с шагом полметра с помощью оптического волокна, вмонтированного в наружную оболочку кабеля. Такой мониторинг позволяет управлять общей нагрузкой всей сети, оптимально перераспределяя ее между линиями не допуская перегрузок. В случае повреждения кабеля вследствие перегрузки или внешнего воздействия система мониторинга с точностью до метра определит место повреждения, что значительно сократит время на устранение аварии.

Территории многих крупных городов давно вышли за рамки «разрешенных к застройке». Поэтому власти и строительные компании мегаполисов ищут новые резервы для строительства. И одним из таких резервов являются участки под линиями электропередачи.

electov.ru