Транзистор как обозначается на схеме. 55. Транзисторы биполярные (устройство, параметры, обозначение, конструкции, применения).
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Что такое транзистор, их виды и применение. Транзистор как обозначается на схеме


Радио для всех - Условные обозначения транзисторов

 

 

 

Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе, то это означает, что эмиттер имеет электропроводность типа р, а база— типа п, если же стрелка направлена в противоположную сторону (VT2), электропроводность эмиттера и базы обратная. Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа п, обозначают формулой р-п-р, а транзистор с базой, имеющей электропроводность типа р-п-р. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора. На схемах это показывается точкой в месте пересечения  соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки. В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.

 

Обозначение                                                                                    Реальный вид

 

Поскольку буквенный код VT преду­смотрен для обозначения транзисторов, вы­полненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на схеме помещают такую, например, запись:

КЛ-КГ4 К159НТ1, либо используют код ана­логовых микросхем (DA) и указывают принад­лежность транзисторов в сборке в позицион­ном обозначении. У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена мат­рица.

Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис показаны транзисторы структуры п-р-п с тремя и че­тырьмя эмиттерами).

 

Обозначение                                                                                    Реальный вид

 

Условные графические обозначения некоторых разновидностей биполярных транзи­сторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и кол­лектора помещают знак эффекта лавинного пробоя (VTl, VT2). При повороте УГО положение этого знака должно оставаться неизменным.Иначе построено УГО однопереходного транзистора: у него один р-п- переход, но два вывода базы. Символ эмиттера в УГО этого водят к середине символа базы. Об электропроводности последней судят по символу эмиттера (направлению стрелки).

Из транзисторов, управляемых внешними факторами, широкое приме­нение находят фототранзисторы. Условные графические обозначения фототранзисторов с выводом базы (РТ1, VT2) и без него (К73). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисто­ры могут входить в состав оптронов. УГО фототранзистора в этом случае вместе с УГО излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.

 

Обозначение                                                                                    Реальный вид

 

Для примера на рис. 8.5 изображена одна из оптопар сдвоенного оп­трона (об этом говорит позиционное обозначение 1/1.1). Аналогично строит­ся УГО оптрона с составным транзистором (U2).

На символ однопереходного транзистора похоже УГО большой группы транзисторов с pn-переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n или p-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса, символы истока и стока присоединяют к нему с одной сторо­ны, затвора — с другой стороны на продолжении линии истока. Электропро­водность канала указывают стрелкой на символе затвора (на рис услов­ное графическое обозначение VT1 символизирует транзистор с каналом n-типа, VT2 с каналом p-типа).

 

Обозначение                                                                                    Реальный вид

 

В условном графическом обозначе­нии полевых транзисторов с изолирован­ным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в про­тивоположную сторону —    с каналом p-типа. Аналогично посту­пают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым ин­дуцированным каналом, символ которого — три коротких штриха (VT5, VT6). Если подложка соединена с одним из электродов (обычно с истоком), это пока­зывают внутри УГО без точки (VT7, VT8).

В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обя­зательно помещают на продолжении линии истока (VT9).

Линии-выводы полевого транзистора допускается изгибать лишь на не­котором расстоянии от символа корпуса (VT1). В некоторых ти­пах полевых транзисторов корпус может быть соединен с одним из электро­дов или иметь самостоятельный вывод (например, транзисторы типа КПЗОЗ).

 

 

     

www.junradio.com

Условные обозначения полевых транзисторов

В электронике полевым транзистором называется электронный компонент, в котором ток проходящий через канал регулируется электрическим полем, образующимся в результате подачи напряжения между его истоком и затвором. Основным отличием полевого транзистора от транзистора биполярного является то, что выходное и входное сопротивление у него существенно выше.

Плевые транзисторы нередко именуют униполярными, поскольку основным принципом их действия является перемещение при помощи поля носителей зарядов одного и того же типа. Конструктивно эти приборы представляют собой изготовленные из полупроводниковых материалов пластинки одного типа проводимости, на противоположных сторонах которых способом диффузии создается область другого типа проводимости. На их границах образуется обладающий большим сопротивлением p-n-переход.

В полевых транзисторах существуют области полупроводника которые называют каналами. Их поперечное сечение, а вместе с ним и ток носителей заряда изменяются под воздействием электрического поля.

Структура полевого транзистора с управляющим p-n-переходом и каналом n-типа

В случае, если между p-областью и n-областью приложить некоторое напряжение Uзи., как показано на рисунке выше, то p-n-переход окажется включенным в обратном направлении, следовательно его толщина увеличится, а толщины канала уменьшается. При этом принято p-область называть затвором полевого транзистора, или же его управляющим электродом. Если к этому каналу подключить еще один источник напряжения Ucи., то через него начнёт протекать ток в направлении от нижнего к верхнему участку n-области. Часть этой области, от которой основные носители зарядов начинают свое движение, называется истоком, а та часть, по направлению к которой они перемещаются – стоком.

Что касается величины тока, который протекает через канал, то определяющим для нее является сопротивление. Оно, в свою очередь, напрямую зависит от толщины канала. Таким образом, если изменяется величина приложенного к каналу напряжения, то вслед за этим происходит изменение величины тока.

В тех случаях, когда для производства этого электронного компонента в качестве основы берут полупроводник p-типа, то получается полевой транзистор, имеющий канал р-типа и управляющий p-n-переход. Канал в нем образуется n-областью.

Структура и схема подключения МДП-транзистора с индуцированным каналом

Полевые транзисторы с изолированным затвором

Помимо тех полевых транзисторов, которые имеют в своей конструкции управляющий затвор, имеются и такие, у которых он изолирован. В электронике для обозначения таких транзисторов используют аббревиатуры МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник). Соответственно, такие приборы называют МОП-транзисторами или МДП-транзисторами.

Для МДП-транзистора характерно то, что в нем между истоком и стоком располагается n-область, представляющая собой подложку. Поэтому образуется два p-n-перехода, которые включены навстречу друг другу. При этом вне зависимости от того, какую именно полярность имеет питающее напряжение, один из этих переходов всегда закрыт, так что в в направлении «исток-сток» ток равен нулю.

Если на затвор подается отрицательное напряжение, то ток в цепи начинает течь. Дело в том, что на расположенные в подложке электроны действует электрическое поле, и они начинают передвигаться вглубь нее.

Существует некоторое пороговое значение напряжения, при котором количество дырок, расположенных у самой поверхности подложки, становится существенно больше, чем электронов. В результате этого происходит так называемая инверсия типа электроповодности: она обретает p-тип. В результате этого между стоком и истоком получается канал, связывающий их. Его толщина зависит от того, какое именно значение имеет приложенное напряжение. Если изменять его, то можно регулировать и толщину канала, поскольку сопротивление участка, располагающегося между истоком и стоком, также будет изменяться.

Обозначения полевых транзисторов на схеме

selectelement.ru

Условное обозначение - транзистор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Условное обозначение - транзистор

Cтраница 1

Условные обозначения транзисторов в их маркировке установлены в следующем виде: первый знак-буква: Г - германиевый; К - кремниевый; второй знак буква Т - транзистор: остальные четыре знака - трехзначное число и буква - шифр, указывающий назначение и модификацию ( разновидность) данного прибора.  [2]

Условное обозначение транзисторов по ГОСТ 5461 - 59 состоит из трех элементов.  [3]

Условное обозначение транзистора показано на рис. 6 - 7 а. На рис. 6 - 7 6 показаны вольт-амперные характеристики участка коллектор-база транзистора типа П-102. Каждая характеристика соответствует определенному значению тока, протекающего по участку эмиттер - база. Из рассмотрения этих характеристик мы еще раз убеждаемся, что величина тока / к, протекающего по участку коллектор-база, практически не зависит от величины напряжения UK, падающего на этом участке, целиком определяется величиной тока эмиттера. Когда ток эмиттера / э равен нулю, по коллекторной цепи протекает небольшой остаточный ток / ко.  [4]

Условное обозначение транзистора показано на рис. 8.44, а, где к - коллектор, э - эмиттер, б - база.  [5]

Условные обозначения транзисторов обоих типов в электрических схемах приведены на рис. 4 - 1, а. Буквы у выводов транзисторов означают: Э - эмиттер, Б - база, К - коллектор. Кружок у транзистора ( на рисунке показан только у транзистора р-п - р) означает, что кристалл помещен в корпус. По ГОСТ допустимы оба обозначения для транзисторов, имеющих корпус.  [6]

Условное обозначение транзистора IGBT, приведенное на рис. 6.2, указывает, что в его составе есть полевая и биполярная части.  [7]

В условных обозначениях транзисторов стрелкой указывается направление тока эмиттера.  [9]

На условном обозначении транзистора стрелка показывает условное направление тока в эмиттере от плюса к минусу.  [10]

Принятые в нашей стране условные обозначения транзисторов содержат сведения об их назначении, физических и конструктивно-технологических свойствах, основных электрических параметрах, применяемом исходном материале.  [11]

На рис. 7.16 иг даны условные обозначения транзисторов. Принцип работы транзисторов обоих типов аналогичен.  [12]

На рис. 4.1 5 показаны условные обозначения транзисторов. Эмиттер изображается в виде стрелки, которая указывает направление тока эмиттерного перехода.  [14]

На рис. 4.1, б показаны условные обозначения транзисторов. Эмиттер изображается в виде стрелки, которая указывает прямое направление тока эмиттерного перехода.  [15]

Страницы:      1    2    3

www.ngpedia.ru

55. Транзисторы биполярные (устройство, параметры, обозначение, конструкции, применения).

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Основная схема структуры биполярного транзистора представлена на рис. 1.

Рис. 1. Простейшая схема устройства транзистора

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p-n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы. Условное обозначение биполярного транзистора приведено на рис. 2

Рис. 2. Условное обозначение биполярного транзистора

Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n- и p-n-p-транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевых, основными носителями являются и электроны, и дырки (от слова «би» — «два»).

Биполярные транзисторы используются для усиления и коммутации сигналов и обычно работают в активном режиме, т.е. когда переход база-эмиттер открыт, а база-коллектор закрыт. При этом ток коллектора будет протекать через оба перехода, а ток базы только через переход база-эмиттер. Таким образом, ток эмиттера будет равен сумме токов базы и коллектора (Iэ=Iб + Iк).

Для понимания принципа работы, рассмотрим n-p-n-транзистор, все рассуждения повторяются абсолютно аналогично для случая p-n-p- транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n-транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные

носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α=0.9–0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен:

β = α / (1−α) =(10÷1000).

Также коэффициент β может быть выражен как отношение приращения

тока коллектора к приращению тока базы:

Таким образом, изменяя малый ток базы, можно управлять значительно

большим током коллектора.

Схемы включения биполярного транзистора

Существует несколько схем включения биполярного транзистора:

  1. Схема включения с общей базой;
  2. Схема включения с общим эмиттером;
  3. Схема включения с общим коллектором;

Любая схема включения транзистора характеризуется такими

основными показателями:

  1. Коэффициент усиления по току ΔIвых\ΔIвх;
  2. Входное сопротивление Rвх=ΔUвх\ΔIвх;
  3. Выходное сопротивление Rвых.

malishev.info

Что такое транзистор, их виды и применение

 

   Транзисторы — полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы. Их основа — пластинка монокристаллического полупроводника (чаще всего кремния или германия), в которой с помощью особых технологических приемов созданы, как минимум, три области с разной электропроводностью: эмиттер, база и коллектор. Электропроводность эмиттера и коллектора всегда одинаковая (р или п), базы — противоположная (п или р). Иными словами, биполярный транзистор (далее просто транзистор) содержит два р-п перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

   На схемах транзисторы обозначают, как показано на рис. 129,а. Здесь короткая черточка с линией-выводом от середины символизирует базу, две наклонные линии, проведенные к ней под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (рис.’ 129,а), то это означает, эмиттер имеет электропроводность типа р, а база — типа п; если же стрелка направлена в противоположную сторону (рис. 129,6), электропроводность эмиттера и базы — обратная (соответственно пир). Поскольку, как уже отмечалось, электропроводность коллектора та же, что и эмиттера, стрелку на символе коллектора не изображают.

 

 

 

 

 Рис. 129

   Знать электропроводность эмиттера, базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет проводимость типа п, обозначают формулой р-п-р, а транзистор с базой, имеющей электропроводность типа р, — формулой п-р-п. В первом случае на базу и коллектор следует подавать отрицательное (по отношению к эмиттеру) напряжение, во втором — положительное.

   Для наглядности условное обозначение транзистора обычно помещают в кружок, символизирующий его корпус. Корпус нередко изготовляют из металла и соединяют с одним из выводов транзистора. На схемах это показывают точкой в месте пересечения лиши-вывода с символом корпуса (у транзистора, изображенного на рис. 129,в, с корпусом соединен вывод коллектора). Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (рис. 129,г). С целью повышения информативности схем рядом с позиционным обозначением транзистора обычно указывают его тип.

   Линии-выводы, идущие от символов эмиттера и коллектора, проводят в одном из двух направлений: перпендикулярно или параллельно линии-выводу базы (рис. 129,д). Излом этой линии допускается лишь на некотором расстоянии от символа корпуса (рис. 129,е).

   Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а кружок-корпус заменяют овалом (рис. 129,ж).

   В некоторых случаях ГОСТ 2.730—73 допускает изображать транзисторы и без символа корпуса, например при изображении бескорпуоных транзисторов ИЛ|Ц когда на схеме необходимо показать транзисторы, входящие в так называемые транзисторные сборки или матрицы (их выпускают в тех же корпусах, что и интегральные микросхемы). Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельных приборов, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (в этом случае на поле схемы помещают такую, например, запись: VT1—VT4 К1НТ251), либо берут код аналоговых микросхем DA и указывают принадлежность транзисторов к матрице в позиционном обозначении (рис. 130,а).

 

 

 Рис. 130

 

 

 Рис. 131

    У выводов таких транзисторов, как правило, приводят условные номера, присвоенные выводам корпуса, в котором выполнена сборка.

   Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 130,6 показаны транзисторы структуры п-p-n с тремя и четырьмя эмиттерами).

   Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (рис. 131,а). При повороте условного обозначения положение этого знака должно оставаться неизменным.

   Иначе построено обозначение так называемого однопереходного транзистора. У него один р-п переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 131,6). Об электропроводности базы судят по символу эмиттера (все сказанное ранее о транзисторах с двумя р-п переходами полностью применимо и к однрпереход-ному транзистору).

   На обозначение однопереходного транзистора похоже условное обозначение довольно большой группы транзисторов с р-п переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью п-или р-типа. Сопротивлением канала управляет третий электрод — затвор, соединенный с его средней частью р-п переходом. Канал полевого транзистора изображают так же, как и базу биполярного транзистора, но помещают в средней части кружка-корпуса , символы истока и стока присоединяют к нему с одной стороны, затвора — с другой. Чтобы не вводить каких-либо знаков для различения символов истока и стока, затвор изображают на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора.

 

Рис. 133

 

 

Рис. 135

   В условном обозначении полевого транзистора с изолированным затворам (его изображают в виде черточки, параллельной символу канала, с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока: если она направлена к символу канала, то это значит, что изображен транзистор с каналом п-типа, а если в противоположную сторону, — с каналом р-типа (рис. 133,а, б). Аналогично указывают тип электропроводности канала и при наличии вывода от кристалла-подложки (рис. 133,в), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три короткие штриха (рис. 133,г, д). Если подложка соединена с одним из электродов (обычно с истоком), это соединение показывают внутри символа без точки (рис. 133, е).

   В палевом транзисторе может быть несколько затворов. Изображают их в этом случае короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (рис. 133,ж).

   Линии-выводы полевого транзистора допускается изгибать лишь на некотором расстоянии от символа корпуса (рис. 133,з), который может быть соединен с одним из электродов или иметь самостоятельный вывод (рис. 133,ы).

   Из транзисторов, управляемых внешними факторами, в настоящее время находят применение фототранзисторы. В качестве примера на рис. 134 показаны условные обозначения фототранзжггоров с выводом базы и без него.

   Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. Обозначение фототранзистора в этом случае вместе с символом излучателя света (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта заменяют знаком оптической связи — двумя параллельными стрелками. Для примера на рис. 135,а изображена одна из опто-

   пар сдвоенного оптрона К249КП1, о чем говорит позиционное обозначение U1.1. Аналогично строят условное графическое обозначение оптрона с составным транзистором (рис. 135,6).

 

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998

nauchebe.net

Транзисторы (полевые, биполярные) - обозначение, типы, применение

Транзистор был изобретен в 50-х годах прошлого века, его появление произвело настоящий фурор - достаточно сказать, что его изобретатели получили Нобелевскую премию.

Здесь будут рассмотрены основные типы транзисторов, принцип их работы в объеме, соответствующем основам схемотехники, поскольку начинающим тонкости работы транзистора на электронно - молекулярном уровне, на мой взгляд, ни к чему.

Технология изготовления транзисторов определяет основные их типы:

  • биполярные,
  • полевые.

Кроме того, каждый из перечисленных типов можно классифицировать по типу проводимости, определяемой материалами, комбинациями (сочетаниями) полупроводников, используемых при их производстве.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Принцип действия, условные обозначения биполярного транзистора.

  1. Биполярный транзистор состоит из трех слоев полупроводника, называемых "база" (Б), "коллектор" (К), "эмиттер" (Э). Ток, протекающий через переход база - эмиттер (Iб) вызывает изменения сопротивления зоны эмиттер - коллектор, соответственно изменяется ток коллектора Iк, причем его значения больше нежели базового. Это основной принцип работы биполярного транзистора, его практические приложения рассмотрим позже.
  2. Поскольку материал транзистора полупроводник, то ток может протекать только в одном направлении, определяемом типом перехода. Соответственно этим определяется полярность подключения (тип проводимости) транзистора (прямая - p-n-p, обратная - n-p-n. Вот, собственно, вся теория, которая Вам первоначально необходима.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор имеет несколько иную конструкцию. Замечу - это достаточно простой вариант, но для понимания принципа действия полевого транзистора вполне подходит.

Принцип действия, условные обозначения полевого транзистора.

  1. Выводы здесь называются "затвор" (З), "сток" (С), "исток" (И). Сток - исток соединены между собой зоной полупроводника, называемой каналом. Сопротивление этого канала зависит от величины напряжения, приложенного к затвору, значит ток, протекающий от истока к стоку (Iс) зависит от напряжения между затвором и истоком.
  2. В зависимости от проводимости кристалла различают полевые приборы с p каналом и n каналом.

ПРИМЕНЕНИЕ ТРАНЗИСТОРОВ

Область применения транзисторов определяется не только их типом, но также характеристиками конкретного прибора, однако можно выделить два основных режима работы:

  • динамический - при нем любое входного сигнала вызывает соответствующее изменение выходного. Иначе этот режим называют усилительным.
  • ключевой - при этом режиме транзистор или полностью открыт или полностью закрыт. В идеале, переходные процессы между этими состояниями должны отсутствовать. Ключевой режим позволяет применять транзистор для управления значительными нагрузками при сравнительно слабых управляющих сигналах.

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Условные обозначения транзисторов Справочники Любительская Радиоэлектроника

Обозначение

Параметр

B1-B2/Iк  статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером; в справочнике приводятся минимальное (B1) и максимальное (B2) значение и ток (Iк) при котором этот параметр определяется. 
Fт  предельная частота коэффициента передачи тока биполярного транзистора. 
Cк/Uк  емкость коллекторного перехода (Cк) и напряжение на коллекторе (Uк), при котором она измеряется. 
Cэ/Uэ  емкость эмиттерного перехода (Cэ) и напряжение эмиттер/база (Uэ), при котором она измеряется. 
tр  время рассасывания биполярного транзистора. 
Uкэ(Iк/Iб)  напряжение насыщения коллектор-эмиттер (Uкэ) биполярного транзистора при заданном токе коллектора (Iк) и заданном токе базы (Iб). 
Iко  обратный ток коллектора. 
Uкб  максимально допустимое постоянное напряжение коллектор-база. 
Uэб  максимально допустимое постоянное напряжение эмиттер-база. 
Uкэ/R  максимально допустимое постоянное напряжение коллектор-эмиттер (Uкэ) при заданной величине сопротивления, включенного между базой и эмиттером (R). 
Iбм  предельно допустимый постоянный ток базы транзистора. 
Iкм/Iкнас  предельно допустимый постоянный (Iкм) ток коллектора предельно допустимый ток коллектора в режиме насыщения (Iкнас) или в импульсе. 
Pк  максимально допустимая постоянная рассеиваемая мощность на коллекторе. 
Pк/Pт  максимально допустимая постоянная рассеиваемая мощность на транзисторе без теплоотвода (Pк) и с теплоотводом (Pт). 
Rпк  тепловое сопротивление перехода коллектор-корпус транзистора. 
Цок  номер рисунка с расположением выводов. 

vicgain.sdot.ru