Стабилизатор постоянного напряжения 24 вольт. Преобразователь напряжения 24 вольт/12 вольт 10 ампер на КР1180ЕН12В | РадиоДом - Сайт радиолюбителей
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

24 Вольта 100 Ватт блок питания с неплохим результатом. Стабилизатор постоянного напряжения 24 вольт


СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА

   Когда собирается первый блок питания, схема берётся самая простая – чтобы всё получилось наверняка. Когда удастся его запустить и получить аж целых 12 регулируемых вольт и току под пол ампера радиолюбитель проникается смыслом фразы «И будет тебе счастье!». Только счастье это длиться не очень долго и вскоре становиться совершенно очевидным, что в БП обязательно должна быть возможность регулирования силы тока на выходе. Доработкой уже имеющегося блока питания это достижимо, но несколько хлопотно – уж лучше собрать ещё один, более «продвинутый». Есть интересный вариант. К маломощному блоку питания можно изготовить приставку для регулировки тока в интервале от 20 mA и до максимума того, что он способен дать, вот по этой схеме:

Схема стабилизатора постоянного тока

   Такое устройство собрал почти год назад.

   Токовый стабилизатор действительно нужная вещица. Например, поможет зарядить любой аккумулятор, рассчитанный на напряжение до 9 вольт включительно, причём замечу, зарядить качественно. Вот только измерительной головки у неё явно не хватает. Решаюсь на модернизацию и разбираю на составные части свою самоделку, где, пожалуй, самый значительный компонент это переменный резистор ППБ-15Е с максимальным сопротивлением 33 Ома.

   Новый корпус сориентирован исключительно под размеры индикатора от магнитофона, который и будет выполнять функции миллиамперметра.

   Для этого у него «рисуется» новая шкала (выбрал ток полного отклонения стрелки в 150 mA, а можно сделать и по максимуму).

      Затем на стрелочный прибор ставиться шунт. 

   Шунт сделал из нихромовой нагревательной спирали диаметром 0,5 мм. Транзистор КТ818 обязательно поставить на радиатор охлаждения.

   Соединение (сочленение) приставки с блоком питания производиться при помощи, интегрированной в корпус импровизированной вилки, штыри которой взяты от обычной сетевой вилки, на одном из концов которых нарезана резьба М4, посредством которой и двух гаек каждый из них прикручен к корпусу.

   Итоговое изображение того, что получилось. Однозначно вышло более совершенное творение. Светодиод выполняет не только функцию индикации, но отчасти и освещения шкалы стабилизатора тока. С пожеланием успеха, Babay.

el-shema.ru

24 Вольта 100 Ватт блок питания с неплохим результатом

В апреле я делал обзор довольно интересного и качественного блока питания на 12 Вольт. Мне он тогда очень понравился соотношением цены и качества. Но в комментариях и потом в личке меня спрашивали про такой же блок питания, но на 24 Вольта. Этим обзором я постараюсь выполнить эту просьбу и покажу что он из себя представляет.

Вообще мне еще и самому было интересно отличие этих блоков питания, но в основном не столько в плане технических характеристик, а самого изготовления, так как сами блоки питания почти одинаковы, но что будет в этот раз…

Небольшое отступление. Блоки питания на 24 Вольта в быту распространены гораздо меньше чем их 12 Вольт собратья, хотя в производстве они применяются очень широко. Но они имеют ряд своих преимуществ. При еще вполне безопасном напряжении, они например могут помочь запитать светодиодную ленту с меньшим падением в кабеле и самой ленте (естественно если лента на 24 Вольта). Также такие блоки питания применяются в небольших самодельных станках (ищется по аббревиатуре CNC).

Сначала как всегда небольшой комментарий по поводу упаковки. К сожалению в магазине не вняли моим слова насчет того, что у упаковки неплохо было бы заматывать и торцы. Правда в этот раз плата никуда не уехала из своего пакета, но вполне могла это сделать как в прошлый раз.

Упаковка

Прислали блок питания в сером пакете замотанный в толстую пленку из вспененного полиэтилена, но как я написал выше, торцы опять не замотали :(

Чтобы не плодить много отсылок к предыдущему обзору, я повторю в этом часть информации которая была там, естественно относящуюся уже к этому блоку питания. Думаю так будет корректнее. Для начала несколько общих видов блока питания.

Внешне плата мне показалась более аккуратной, а трансформатор немного больше, чем в прошлом варианте. Но На самом деле в трансформаторе использован тот же сердечник, просто из-за большего количества изоляционной ленты он кажется больше :)

Плата имеет такие же радиаторы как и в 12 Вольт версии, только радиатор диода немного смещен к трансформатору, буквально на 2мм. Видно была какая то оптимизация, правда смысл ее от меня как то ускользает.

На входе блока питания установлен такой же безвинтовой клеммник как и в прошлый раз, изменился входной дроссель, теперь он намотан чуть более толстой проволокой, соответственно имеет меньшую индуктивность, мне кажется это лишнее, в прошлом было лучше. Так же присутствует помехоподавляющий конденсатор, здесь все в порядке.

Краткие характеристики: Входное напряжение 85-265 Вольт Выходное напряжение — 24 Вольта Ток нагрузки — указано 4-6 Ампер* Выходная мощность — 100 Ватт (максимальная)

Размеры платы как и в прошлый раз составляют 107х57х30мм.

*- Как мне кажется, насчет 6 Ампер производитель (или магазин) явно загнули, так как 6 Ампер это почти 150 Ватт при заявленной 100. Скорее этот БП по току является половинным вариантом предыдущего, т.е. 3 Ампера номинальная и 4 Ампера максимальная.

Чертеж с габаритными размерами платы.

Сравнительное фото двух блоков питания, вверху 24 Вольта, внизу 12 Вольт.

И соответственно сравнительное фото печатных плат. Вот отсюда начались отличия блоков питания. При почти полном сходстве сверху, они заметно отличаются снизу. Что бросилось в глаза сразу после распаковки, так это некрасивая пайка и грязная плата. Похоже что ее пытались мыть, но видимо попала она в мойку уже после кучи других плат так как имеет почти равномерный белый налет. Пайка же просто матовая, это видно даже на таком фото.

Топология платы почти не изменилась, хотя разница есть. Правда есть и небольшой плюсик, теперь радиаторы припаяны за оба крепежных вывода, а не по одному, как в прошлый раз. На плате видно, что один из крепежных выводов радиатора диода находится в опасной близости от минусовой дорожки. Сначала я немного заволновался, но потом заметил, что диод то изолирован от радиатора. Это ухудшает теплопередачу с диода на радиатор, но увеличивает безопасность и уровень помех в эфир.

«оптимизация» коснулась и элементной базы. В прошлом обзоре я отдельно отметил то, что применены точные резисторы, в этот раз производитель поставил обычные. Я не скажу что это плохо, точные резисторы тут не особо и нужны, но видно что плату «оптимизировали» не только в плане смещения радиатора. Также как и в прошлый раз применен ШИМ контроллер CR6842S, который является аналогом более известного контроллера SG6842.

Я не стал чертить новую схему, так как она почти 1 в 1 с 12 Вольт версией, но внес все изменения, которые касаются конкретного БП.

Случайно заметил, что на плате присутствуют какие то непонятные следы в районе мощного SMD резистора. Производитель явно стал экономить. С одной стороны экономия это хорошо, с другой, главное чтобы она не сказалась потом на качестве.

В качестве силового применен немного другой транзистор чем в прошлый раз, 20N60C3 Он немного отличается в лучшую сторону, 650 Вольт против 600, 20.7 Ампера против 20 и 2400пФ емкость затвора против 3000пФ у предыдущего. Измерения под нагрузкой покажут, но пока неплохо.

В прошлый раз я заметил, что конденсатор питания ШИМ контроллера стоял с заниженной емкостью. В этом БП все в порядке. Кстати мне потом писали люди, купившие блоки питания после моего обзора, у них так же стоял правильный номинал, а так как мой был перепаян, то думаю что это мне так «повезло».

В качестве выходного диода применена диодная сборка 100 Вольт 2х20 Ампер stps41h200ct производства ST. Я бы не сказал что это хорошо, так как точно такая же сборка стояла и в прошлом БП, рассчитанном на 12 Вольт. Программа в которой я рассчитываю свои БП выдает обратное напряжение 110 Вольт при 24 Вольта выходном. Конечно она рассчитана под другой тип ШИМ контроллера. Программа выдает расчет с запасом, но я всегда ставлю в такие цепи диод на 150 Вольт. Так что можно сказать, что здесь выходной диод стоит впритык по обратному напряжению :( Зато в снаббере применили более высоковольтный конденсатор, хотя как по мне его емкость великовата для данного напряжения. Возможно это отчасти и защищает выходной диод.

Выходные конденсаторы также как и в прошлом БП имеют емкость в 1000мкФ и рассчитаны на 35 Вольт. Конденсаторы, как и в прошлый раз, не фирменные, так как Nichicon FW серии имеет золотистый цвет и довольно дорогие, да и позиционируются они для усилителей звука и т.п.

Но написано это одно, а на самом деле это совсем другое, потому конечно я измерил их реальные характеристики. И они практически сошлись с характеристиками конденсаторов в 12 Вольт БП из чего я могу заключить, что это одни и те же конденсаторы, но в разной «упаковке». Выходные — 1100 мкФ, 30 мОм (на фото измерены два параллельно) Входной — 79.9 мкФ, 0.162 Ома.(этот имеет лучшие характеристики чем в прошлый раз)

Дальше немного о недостатках Для начала о более грустном. В качестве межобмотчного конденсатора применен не специальный Y конденсатор, а обычный высоковольтный. Такая картина была и в мелком 12 Вольт БП. В целях безопасности лучше заменить. А менее грустным было то, что на плате был поврежден резистор снаббера диода. Без него Бп лучше не использовать, да и вообще я всегда перед включением осматриваю плату на возможные повреждения. Снаббер необходим по нескольким причинам, уменьшение напряжения выбросов (помогает аналогичной цепи на высоковольтной стороне), защищает выходной диод от коротких импульсов, уменьшает помехи от переключения диода. Резистор был номиналом 5.6 Ома, такого у меня не нашлось, потому поставил 6.8 Ома, значения особого это не имеет, можно поставить даже 10 Ом, работать будет практически так же.

С внешним осмотром покончили и переходим к более «вкусному», тестированию БП под нагрузкой. Это мне было не менее интересно, чем просто внешнее сравнение.

Тестирование блока питания

Испытывать блок питания я буду почти так же как и в прошлый раз, за исключением того, что в качестве нагрузки будут использоваться не резисторы, а новая электронная нагрузка. Пока она находится на стадии обкатки, потому я сначала проверю на небольшом блоке питания, но более мощные БП уже на подходе :)

В групповое фото не вошел мультиметр, я подключил его потом. Вообще электронная нагрузка неплохо умеет и сама измерять напряжение, но так как она подключена кабелем, с далеко не нулевым сопротивлением (сверхпроводники закончились, увы :( ), то на больших токах он может немного занижать показания. Мультиметр на фото вышел плохо, потому на всякий случай я буду дублировать его показания в тексте.

Тестирование проходило при комнатной температуре, но чуть больше чем в прошлый раз (на улице все таки лето). Первое измерение температуры было через 5 минут после старта, следующее через 15, после этого ток повышался, и следующие циклы были уже по 20 минут. Весь процесс занял 2 часа 20 минут. Делитель щупа был в положении 1:1, цена деления 50мВ.

Итак. 1. Старт, холостой ход, напряжение на выходе 23.9 Вольта 2. Ток нагрузки 500мА, напряжение на выходе 23.9 Вольта

1. Ток нагрузки 1 Ампер, напряжение на выходе 23.9 Вольта. 2. Ток нагрузки 2 Ампера, напряжение 23.9 Вольта

1. Ток нагрузки 3 Ампера, напряжение 23.9 Вольта. 2. Ток нагрузки 4 Ампера, напряжение немного просело до 23.8 Вольта, пока отличный результат.

Выходная мощность БП составила около 95 Ватт, но глядя на температуры я решил на этом не останавливаться и повысил ток до 4.5 Ампера и прогнал еще 20 минут, это фото я решил в обзор не добавлять так как дальше я нагрузил блок питания на 5 Ампер. Ток нагрузки 5 Ампер, выходное напряжение 23.8 Вольта, выходная мощность почти 120 Ватт. Температуры выросли (они будут ниже в табличке). Так же увеличились пульсации, что впрочем было вполне ожидаемым.

В этом тесте цена деления стоит уже 200мВ, так как при 50мВ осциллограмма не влазила на экран. Напряжение пульсаций было около 0.8 Вольта, если учитывать что БП на 24 Вольта, а не на 12 и работает на мощности выше максимальной, то я считаю это неплохим результатом. После этого я прекратил тест так как температура транзистора достигла верхней границы безопасной зоны и дальнейшее поведение можно было предсказать без тестов.

Каждые 20 минут, перед увеличением тока нагрузки я измерял температуры компонентов бесконтактным термометром. Измерялись температуры — высоковольтного транзистора, трансформатора, выходного диода и выходного конденсатора (того который стоит сразу после диода). Я измерял температуру корпуса транзистора и диода, а не температуру радиатора. Это позволяет более правильно понять реальную картину, кроме того корпус компонентов черный и результат измерения более точный, чем измерение алюминиевого радиатора.

Как и предполагалось, выходной диод имеет температуру меньше чем 12 Вольт БП, так как падение на нем осталось прежним, а ток стал меньше, это же касается и выходных конденсаторов. Но удивило то, что трансформатор имел меньшую температуру. В 12 Вольт БП при 96 Ваттах он нагрелся до 93 градусов, здесь же при 120 Ваттах имел всего 84 градуса. А вот транзистор стал греться больше, хотя его характеристики должны были быть лучше чем у 12 Вольт варианта. при 95 Ваттах в 12 Вольт версии было 73 градуса, в 24 Вольт варианте стало 78 градусов. Хотя возможно здесь он хуже прижат к радиатору так как отличие небольшое.

Резюме:Плюсы Почти качественная сборка, есть небольшие замечания Компоненты нормального качества, но уже без запаса, как было в 12 Вольт версии. Соответствие заявленным параметрам. Отличная точность стабилизации выходного напряжения. Низкая цена.

Минусы Замечание к упаковке (минус магазину) Неправильный тип межобмоточного конденсатора. Выходная диодная сборка применена без запаса.

Мое мнение. Хотя внешне блок питания меня немного расстроил, матовая пайка, плохая промывка, обычные резисторы вместо точных, то после тестирования я изменил свое мнение. Если закрыть глаза на то что поставили межобмоточный конденсатор не Y типа и был поврежден резистор (допускаю что это частный случай), то БП весьма неплох. Обрадовала нормальная работоспособность вплоть до 120 Ватт при заявленных 100. Судя по результатам тестов, при 100 Ваттах его можно эксплуатировать вообще без проблем.

Когда писал обзор, то заметил, что магазин снизил цену на этот блок питания (в заголовке цена уже снижена), возможно будет полезным. Отчасти поэтому я хотел выложить обзор быстрее.

Небольшое дополнение

В процессе тестирования БП я заметил, что пульсации имеют четко выраженную форму иглы, такие выбросы обычно довольно неплохо гасятся керамическими конденсаторами, потому я решил попробовать немного доработать блок питания. Для этого я допаял четыре конденсатора емкостью 0.15мкФ параллельно выходным конденсаторам и непосредственно выходному клеммнику.

Результат доработки можно увидеть на картинке. В обоих случаях ток нагрузки был 5 Ампер и цена деления составляла 200мВ.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Схема регулируемого стабилизатора

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и  припаял его к плате с помощью проводков.

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала - Егор.

   Форум по БП

   Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

radioskot.ru

Стабилизаторы напряжения | Практическая электроника

Стабилизаторы напряжения — важнейшая часть современных радиоэлектронных устройств. Согласитесь, бывают  случаи, когда для питания электронных безделушек требуется стабильное напряжение, которое  не зависит от нагрузки, например,  5 Вольт для питания схемы на микроконтроллере или скажем 12 Вольт  для питания автомагнитолы. Чтобы не переворачивать весь инет и собирать сложные схемы на транзисторах, инженеры-конструктора  придумали так называемые стабилизаторы напряжения. Это словосочетание говорит само за себя. На выходе такого элемента мы получим напряжение, на которое спроектирован этот стабилизатор.

В нашей статье мы  рассмотрим трехвыводные стабилизаторы напряжения семейства LM78ХХ.  Серия 78ХХ выпускаются в металлических корпусах  ТО-3 (слева)  и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо «ХХ» изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 — 15 Вольт. Все очень просто. А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

Думаю, можно подробнее объяснить что есть что. На рисунке мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала.  Это требуется для уменьшения пульсаций как  по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью Как получить из переменного напряжения постоянное. Какое же напряжение подавать, чтобы стабилизатор работал как полагается? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Смотрите, из скольких транзисторов, резисторов  и диодов Шоттки  и даже конденсатора состоит один стабилизатор!  А прикиньте, если бы мы эту схемку собирали из элементов?  =)

Идем дальше. Нас интересуют вот эти характеристики. Output voltage — выходное напряжение. Input voltage — входное  напряжение. Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для презиционной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 — 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может «колыхаться» в диапазоне от 7,5  и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и заключается вся прелесть стабилизаторов.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт — это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об  охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток  на выходе, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как Вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме 

Берем нашу Макетную плату  и быстренько собираем выше предложенную схемку подключения. Два желтеньких  — это конденсаторы.

Итак,  провода 1,2 — сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7.5 Вольт и  до 20 Вольт. В данном случае я поставил напряжение 8.52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? Опаньки — 5.04 Вольта! Вот такое значение мы  получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7.5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входящее напряжение.  По даташиту можно подавать на него входное напряжение  от 14.5 и до 27 Вольт. Задаем 15 Вольт с копейками.

 А вот и напруга на выходе. Блин, каких то 0.3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт?  Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических кондера-фильтра, для устранения пульсаций, и высокостабильный блок питания на 5 Вольт к Вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе транса тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый  стабилизатор.

Для того, чтобы стабилизатор не перегревался и не надо было бы ставить большие радиаторы с обдувом, если у Вас есть возможность, заводите на вход минимальное напряжение, написанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт,  а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем,  что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U — напряжение, а  I — сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность — это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Все большему числу электронных  устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям.  Используйте же  на здоровье достижения электроники, и не заморачивайтесь по поводу питания своих электронных безделушек. И не забывайте про радиаторы ;-).

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке.

www.ruselectronic.com

Преобразователь напряжения 24 вольт/12 вольт 10 ампер на КР1180ЕН12В | РадиоДом

Напряжение бортовой сети грузовых автомобилей обычно 24 вольт. Таково и номинальное напряжение их аккумуляторных батарей. А большинство выпускаемых приборов помощников, предназначенных для применения в автомобилях (электрические кофеварки, телевизоры, магнитолы и пр.), рассчитаны на напряжение питания 12 вольт ±20 %. Для их питания от 24 вольт используют преобразователи 24 вольт — 12 вольт, которые выпускаются многими фирмами.Случается, что фирменные преобразователи напряжения не выдерживают перегрузки (особенно, если включают одновременно несколько устройств). Замена стабилизатора заметно "напрягает" кошелек.И когда мне пришлось подряд ремонтировать несколько преобразователей, устраняя одну и ту же неисправность, я решил "пойти другим путем" и установил в "фирменный" корпус небольшую схему ниже, которая с тех пор работает безотказно. 

Этот преобразователь и одновременно стабилизатор постоянного напряжения 12 вольт собран на микросхеме КР1180ЕН12В. Микросхема КР1180ЕН12В представляет собой интегральный стабилизатор напряжения с фиксированным положительным выходным напряжением 12 вольт и максимально допустимым током нагрузки 1,5 ампер, выполненный в корпусе типа КТ-28-2. ИМС имеет защиту от короткого замыкания и перегрева. Максимальная рассеиваемая мощность - 2 ватт, а максимально допустимое входное напряжение — 35 вольт.Для полного исключения теплового "пробоя", который может возникнуть при длительной эксплуатации устройства с предельной нагрузкой, микросхему и транзистор VT1 необходимо установить на разные теплоотводы.Все радиокомпоненты устройства отечественные:D1 - КР1180ЕН12ВVD1 - КД202АVT1 - КТ837ДR1 - 20 Ом

radiohome.ru

Простой стабилизатор напряжения | Все своими руками

Опубликовал admin | Дата 30 сентября, 2011

Здравствуйте дорогой читатель. После того, как появились трехвыводные стабилизаторы напряжения, жизнь для разработчиков линейных блоков питания стала лучше, жизнь стала веселее. И я тоже к ним пристрастился — удобная штука. И каких только схем на них не встретишь.

Здесь приводится типовая схема включения регулируемого трехвыводного стабилизатора напряжения на микросхеме LM117, наш полный аналог — КР142ЕН12А.

Максимальное входное напряжение КР142ЕН12А равно сорок пять вольт, минимальное входное — пять вольт. Особенно хорош верхний порог входного напряжения этой микросхемы, есть шансы, что она останется жива при аномальном перенапряжении первичной сети.

Диапазон выходных напряжений от 1,25 до 37 вольт — достойный диапазон. Максимальный выходной ток микросхемы с соответствующим радиатором составляет полтора ампера. Так как я воспитывался в оборонной промышленности, то и все элементы схем стараюсь использовать на 30 максимум на 50% от их предельно-допустимых параметров. Так стабилизатор, собранный по этой схеме с выходным напряжением 13,6 вольт и током нагрузки 400ма работает уже одиннадцать лет. Рассчитать радиатор самому очень сложно, поэтому я их подбираю. Оставляю такой радиатор, при котором температура самой микросхемы не превышала 40-50 градусов при максимальной нагрузке. Во всем должен быть запас. Конденсатор С1 на схеме необходим, если длина провода от конденсаторов фильтра до микросхемы больше восьми сантиметров. R1 может принимать значения от 220 до 270ом и устанавливать его лучше прямо на выводы микросхемы,  при  этом время пайки должно быть не более трех секунд. Резистор R2 можно оставить подстроечным, Но если вы делаете блок питания под конкретное напряжение, его следует заменить постоянным, сами понимаете — контакт, да еще и скользящий — опасная штука. R2 можно рассчитать по формуле — R2=R1x (Uвых/1,25 — 1). Собираясь делать радиоаппаратуру, не забывайте о том, где она у вас будет работать, или под одеялом дома, или в поле зимой на ветру. От климатических условий зависит и выбор радиокомпонентов по диапазону рабочих температур.До свидания К.В.Ю.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:123 695

www.kondratev-v.ru

Регулируемый блок питания 0-24v 5a

 

 

R1       180R   0,5W

R2       6К8     0,5W

R3       10k    (4k7 – 22k) reostat

R4       6k8      0,5W

R5       7k5      0,5W

R6       0.22R  5W (0,15- 0.47R)

R7       20k      0,5W

R8         100R    (47R – 330R)

 

C1       1000 x35v       (2200 x50v)

C2       1000 x35v       (2200 x50v)

C3       1 x35v

C4       470 x 35v

C5       100n ceramick (0,01-0,47)

F1        5A

 

T1        KT816           (BD140)

T2        BC548           (BC547)

T3        KT815             (BD139)

T4        KT819(КТ805,2N3055)

T5        KT815              (BD139)

VD1-4 КД202         (50v 3-5A)

VD5    BZX27            (КС527)

VD6    АЛ307Б, К (RED LED)

 

 

 

 

 

 

Регулируемый стабилизированный блок питания – 0-24V, 1 – 3А

с ограничением тока.

 

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

 

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно - если стабилитрон на 27 вольт , то максимальное выходное напряжение будет в пределах 24-25 вольт.

 

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

 

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6   по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,,,

 

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения , извиняюсь - потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

 

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

 

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

 

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

 

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот , тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается... Но попробуем выразиться математически , то бишь

школьный курс физики

P=U×J

где Р- это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J - ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт... Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ , аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

 

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая.... Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

 

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника.... Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

 

 

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»

 

 

Схема подключения запараллеленных транзисторов вместо одного

(VT4)

ПРИМЕЧАНИЕ:

Расположение светодиода на схема верное.Просьба обратить внимание, что на печатной плате допущена ошибка и светодиод(LED Red) следует впаивать в обратно полярности, а не так, как указанно. Приносим свои извинения за допущенную ошибку.

 

 

 

 

   

radijo.eu