Система тн. Системы защитного заземления TNC, TNCS, TNS, TT, IT
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Система заземления «TN-C-S». Система тн


Система заземления «TN-S»

Самая совершенная, на сегодня, система заземления «TN-S» (тип электрической сети) настоятельно рекомендуемая к использованию ПУЭ (Правилами Устройства Электроустановок).В России до настоящего времени применяется система подобная TN-C (Система TN-C запрещена в новом строительстве, в цепях однофазного и постоянного тока. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии - ПУЭ 1.7.132).

Система заземления «TN-S» - от питающей подстанции до потребителя идут два разных нулевых провода: N - рабочий ноль и PE - защитный ноль, тем самым, обеспечивается наибольшая электробезопасность, как для человека, так и для электропотребителей.

При пробое на корпус, ток утечки идет по зануляющему (заземляющему) проводнику на защитный ноль - PE, чем вызывает срабатывание УЗО (токи через дифференциальный трансформатор к нагрузке и обратно не равны). А при большом токе утечки срабатывает автоматический выключатель

Вообще система заземления «TN-S», была впервые разработана в 1930-х годах и внедрена на территории Европейских стран, в которых последние лет 50 является основной схемой защиты потребителей электроэнергии. Скорее всего, такая же задача стоит и перед Российскими предприятиями электрических сетей, так как при проектировании новых линий развития электроснабжения, рекомендуется использовать пятижильный электромонтаж для трехфазных вводов и трехжильный – для однофазного подключения, начиная от источника питания и заканчивая розеткой конкретного абонента. Как известно – рекомендации очень часто переходят в нормы и положения стандартов, а пока одним из этапов такого перехода, является обязательный электромонтаж по системе заземления «TN-С-S», так как прямой переход из «TN-С» в «TN-S» сопряжен с большими капиталовложениями и сопоставим со строительством новой ГЭС.

Рис1. Система TN-C

Рис2. Система TN-S

Рис3. Система TN-C-S

Что же в нем такого замечательного, если требуется, пусть постепенный, но обязательный переход? Чтобы выяснить это, прежде всего, рассмотрим его электрическую схему. Она полностью идентична с традиционной системой электроснабжения, где помимо токоведущих линий включен нулевой проводник, с той немаловажной разницей, что в схему добавляется еще один нулевой проводник, не требующий повторного заземления ни на линии «N», ни на линии «РЕ», которая осуществляется только на начальном источнике питания. Тем самым, позволяя разделить их рабочие и защитные функции по отдельным шинам питания. То есть рабочий проводник «N» выполняет только функции ЭДС (электродвижущая сила — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура), а проводник «РЕ» – только функции защиты, при этом, добиваясь полной изоляции друг от друга. Такая схема электромонтажа, особенно актуальна, в срезе проблем, когда совершенно не осуществляется контроль над состоянием защитных заземленных контуров, как видно, надобность в этом полностью отпадает.

Теперь, после того как выяснили электрическую схему, становится очевидным, что такая система заземления «TN-S» максимально обеспечивает защиту электрического оборудования и самого человека. Мало того, она исключает высокочастотные наводки и другие помехи на потребительские линии исходящие от некоторых приборов. Подобную ситуацию, наверняка наблюдал каждый из нас, когда в соседнем подъезде кем-то использовалась электробритва, иногда дрель или сварочный аппарат, то на экране телевизора появлялись дребезжащие искажения. Такая система, если не полностью, то большую часть помех, колебательных и электромагнитных возбуждений, временами возникающих в электрических сетях, непременно исключает. Поэтому, система заземления «TN-S», очень полюбилась сотрудникам, которые работают с информационным, телекоммуникационным, радарным или локационным оборудованием, так как осуществляется максимальная изоляция от кожухов и корпусов других электрических устройств, а также наводок через «землю», иначе говоря, от источников помех.

Условные обозначения систем заземления :

Первая буква - состояние нейтрали источника относительно земли .

Т - заземлённая нейтраль . I - изолированная нейтраль .

Вторая буква - состояние открытых проводящих частей относительно земли .

Т - открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети . N - открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания .

Буквы после N - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников .

S - нулевой рабочий (N) и нулевой защитный (PE) проводники разделены . С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник) .

Система заземления «IT»

Система заземления «ТТ»

Система заземления «TN-С»

malahit-irk.ru

Системы защитного заземления TNC, TNCS, TNS, TT, IT

 

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

 

TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.Neutral and PE (protected earth conductor) are combined throughout the system.

 

TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.

Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.

 

TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.

TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.

 

IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).

Разновидности IT системы:

  • A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
  • B) проводник «N / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.

 

 

Термины / сокращения:

  • T – Terra / Земля (лат. terra, франц. terre)
  • N – Neutral / Нейтраль
  • C – Combined / Совмещённый
  • S – Separated / Отдельный
  • I – Isolated / Изолированный (франц. terre isolee)
  • PE – Protected Earth conductor / Защищённая шина Земли
  • PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)

 

 

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

 

Системы TN

Основные принципы схемы TN:

  • Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
  • Нагрузка не имеет местного заземления.

Существующие варианты схемы TN:

  • TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
  • TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

 

Система TNС (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).

 

Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции:  заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:

Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TT

Основные принципы схемы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).

 

Нарушение изоляции в системе TT

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:

Рис.4. Нарушение изоляции в системе TT

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:

IL > ΔI

IL = UL / RL – ток пробоя / утечки / leakage

Условие надёжной работы УЗО:

R (CD) << 220 В / ΔI; для УЗО с ΔI=30мА: R (CD) << 7кОм.

R(AB) =RL – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).

U(AB) =UL – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).

R(CD) – сопротивления между «Землей» трансформатора ТП и «Землей» потребителя.

Если R(CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.

Если R(CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит обнаружить аварию и сделать своевременный ремонт, а второй пробой приведёт к аварии.

 

Система IT (Изолированная нейтраль)

Основные принципы схемы IT:

  • Нейтраль трансформатора НЕ заземлена. Но не заземлена только теоретически. Фактически она заземлена посредством паразитных ёмкостей кабелей и / или принудительно через высокое сопротивление около 1.5 кОм («импедансно-заземлённая нейтраль»).
  • Земля/корпус нагрузки заземлены.

 

Нарушение изоляции в системе IT

Подробные замечания:

Рис.5а. Одиночный пробой / нарушение изоляции в системах IT

Рис.5б. Двойной пробой / нарушение изоляции в системах IT

 

Если происходит первое нарушение изоляции на фазном проводнике, в месте нарушения развивается и протекает небольшой ток (между токоведущим проводником и «Землей»), обусловленный паразитными емкостями кабелей (и / или дополнительным принудительным высоким сопротивление ZN Нейтраль-«Земля») (см. рис. 5а). Контактная разность потенциалов (напряжение пробоя) U(A1B1) = UL1 при этом достигает всего нескольких вольт и не опасно (ток также не опасен):

IL1 = UФ / Rлинии

UL1 = RL1 * IL1

Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли »в IT.

RL1 – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на землю и «Землей».

Rлинии – сопротивление линии, включающее паразитные емкостные сопротивления кабелей RП и принудительное высокое разрядное сопротивление Нейтраль-«Земля» ZN (если установлено).

UL1 – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на землю) и «Землей» (напряжение пробоя).

Uф – фазное напряжение трансформатора

IL1 – ток пробоя / утечки / leakage.

 

Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. рис. 5б), контактная разность потенциалов второго места нарушения (напряжение пробоя) равна UL2 = √3*UФ-UL1 может быть велика и опасна.

При малых сопротивлениях первого и второго повреждённых участков (RL1, RL2) значительный ток утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):

IL1 = IL2 = √3*UФ / (RL1 + RL2)

Второе нарушение изоляции опасно в IT!

Корпуса нагрузок приобретают потенциалы, обусловленные этим током. Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.

 

Обозначения:

  • UL1 (UL2) – напряжение пробоя первого (второго) повреждённого участка.
  • UФ – фазное напряжение трансформатора.
  • IL1 (IL2) – ток пробоя/утечки 1 участка (2 участка).
  • RL1 (RL2) – сопротивление 1 (2) повреждённого участка.

Совместное использование автоматов токовой защиты и УЗО обеспечивают в данных случаях необходимую защиту. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.

Для надёжного срабатывания УЗО требуется установка принудительного сопротивления ZN (Нейтраль-«Земля») обычно не более 1500 Ом. Без этого сопротивления первый пробой нельзя обнаружить (и своевременно устранить), если в системе других устройств нет (кроме УЗО и токовых автоматов – см. ниже).

Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.

Дополнительно повысить степень защищённости можно установкой ПМИ / PIM (постоянного мониторинга изоляции / датчика изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно ZN), включаемый так же как и ZN между Нейтралью и «Землей» ТП.

ПМИ позволяет:

  • Точно фиксировать серьёзные пробои фаза – «Земля», вплоть до КЗ.
  • Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).

В отличие от остальных систем (TN, TT), это позволяет обнаружить первое нарушение изоляции, но не отключать аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до конца, и только после ее завершения произвести штатное отключение и ремонт изоляции. Это особенно важно, например, для больниц и др. мест где важно не столько своевременно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключать возможности внезапного неконтролируемого автоматического отключения цепей. Поэтому система IT введена во многих странах как стандарт для госпиталей, сооружений связанных с проводящими средами (водой, землёй и др.), например, корабли, метро и др. мест требующих повышенной безопасности.

Таким образом под повышенной безопасностью системы IT понимается возможность безопасно обнаруживать и устранять аварии изоляции всех проводников в системе.

В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от особенностей нагрузок и применяемых ZN и ПМИ.

Кроме этого, сами защитные цепи ПМИ дополнительно защищаются, например, на ТП с помощью разрядника или блока защиты от выбросов напряжения (surge limiter, surge suppresor).

 

 

Обозначения:

  • SCPD (Short-Circuit Protection Device) – автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем. Автомат размыкает цепь, если ток в цепи превысил паспортный номинальный ток автомата.
  • RCD (Residual Current Devices) – УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО−Д) или выключатель дифференциального тока (ВДТ) или защитно-отключающее устройство (ЗОУ) – механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения вызывает размыкание цепи нагрузки.
  • PIM (permanent insulation monitor) – ПМИ постоянный мониторинг изоляции / датчик изоляции.
  • ZN optional impedance – дополнительное принудительное сопротивление Нейтраль-Земля на ТП.
  • Surge Limiter (surge suppresor, surge arrestor) – разрядник или блок защиты от выбросов напряжения или блок защиты от перенапряжения.

 

Внимание!

Все вышеприведённая информация относится к защите пользователя, имеющего доступ только к изолированным проводам и электрооборудованию в защитном корпусе.

Пожалуйста помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных системах заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.

Примеры тяжёлой опасности для человека:

 

Пример 1

Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА – батареи в батарейном кабинете всегда под напряжением (в том числе. при отключенном ИБП) и опасны.ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!

 

Пример 2

Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВA. Касание (одновременное) человеком фазы и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасноВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!(УЗО не сработает, если человек находится на изолирующем коврике!)

 

Пример 3

Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ уроненный на клеммы сборки аккумуляторов 100 А·ч может сгореть как предохранитель с опасной световой вспышкой и поражая окружающее пространство брызгами металла.

 

Внимание!

Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:

  1. Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
  2. Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
  3. Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
  4. Часы наработки оборудования не превысили опасный предел (вопрос времени).

 

www.xn--80aacyeau1asblh.xn--p1ai

Система заземления TN-C - описание, схема, плюсы и минусы

 

Такая схема являет собой вариант системы TN, в котором выполнено совмещение рабочего и защитного нулевых проводов по всей длине (иными словами, сделано защитное зануленние). Система эта считается наиболее распространенной, существует она до сих пор и, наверное, еще долго проживет. В этой схеме заземляющий контур выполняется прямо на ТП. Провод нуля механически и электрически соединяется с контуром, а к потребителю приходит в виде одного (PEN) провода. В этой системе нулевой (он же защитный) провод носит название PEN-проводника.

Разберем простой пример. Мы, скопив деньжат, решили купить домик в деревне. Все бы прекрасно, да вместе с этим домиком нам достанется заземление по давно уже устаревшей схеме TN-C. Тут надо, обязательно, выполнять монтаж контура заземления. Если это проигнорировать, то появится риск немалой опасности. Например, такая ситуация: происходит обрыв «нуля» на ЛЭП от ТП. В этом случае произойдет (обязательно) перекос фазного напряжения, в результате чего электрооборудование, подключенное на этой линии, выйдет из строя. Но это еще не все. Наиболее неприятное тут то, что если в это время к корпусу какого-нибудь прибора прикоснется человек, то он, непременно, получит удар током. И ситуации подобного типа, очень часто, оканчиваются летальным исходом. Монтируя заземляющий контур, необходимо предусматривать абсолютно все варианты и прокладывать такой тип горизонтального заземлителя, который поможет не бояться обрыва нуля у трансформатора питания. Выполнить это можно, увеличив сечение проводов от заземлителя до основной шины заземления и поставив заземлитель, имеющий необходимое сопротивление токовому растеканию.

Плюсы и минусы

Плюс у такой системы всего один: такая система довольно легко монтируется и не требует больших денежных вложений. Минусам же этой схемы есть смысл уделить побольше внимания. При наличии заземления по этой схеме, есть риск получить удар током, что, иногда, может привести к нехорошим последствиям. Так что, если электрик, которого вы наняли, советует выполнить монтаж по такой схеме, стоит призадуматься на тему отказа от его услуг и поискать другого. Те аппараты защитной коммутации, что установлены при такой схеме, смогут выполнить защиту лишь от токов короткого замыкания! Произвести защиту людей от поражения током такая схема не имеет возможности.

Как быть, если стало известно, что установлена эта система? Если стало известно о наличии этой схемы, то необходимо помнить, что, при любой реконструкции, подобная система обязана быть заменена более безопасной (в наши дни запрещена установка этой системы).

Все организации, выполняющие энергоснабжение, на чьем балансе есть жилые постройки, оборудованные подобной схемой, имеют рекомендации по переводу их на системы TN-C-S, либо на TN-S выполняя модернизацию систем электрического снабжения. Примером этого может служить выполнение монтажа СУП (система уравнивания потенциалов). Кроме того, если применена система заземления, выполненная по этой схеме, то PEN-провод, ни в коем случае, нельзя использовать в роли заземляющего проводника для приборов. Иначе, довольно высока возможность, при возникновении аварийной ситуации, получить поражение электротоком, поскольку корпус прибора окажется под напряжением.

Когда я сдавал экзамен по электробезопасности (на работе), меня спросили, в чем разница между четырехпроводной и пятипроводной линиями. Я на это ответил, что в четырехпроводной линии есть три фазы и ноль, а в пятипроводной – три фазы, ноль и земля. Этого экзаменатору оказалось достаточно и мы перешли к следующему вопросу. А, ведь, хотелось поговорить об этом побольше, обсудить все стороны обоих вариантов линий. Возможно, экзаменатор рассказала бы мне о том, чего не знаю, либо знаю плохо. Ну да ладно, что было, то было и не мне об этом судить. Главное, что ответ на вопрос был засчитан, как правильный и экзамен я, в результате, сдал.

Хочется надеяться, что моя статья помогла разобраться в предоставленной теме и, после ее прочтения, никаких вопросов, касающихся этой системы электроснабжения, не возникнет. Если так, то я не зря трудился,

podvi.ru

Системы заземления TN-C, TN-S, TN-C-S и ТТ

Содержание статьи

Заземление – отвод напряжения, возникшего в угрожающем для безопасности месте, в место, где оно никому не повредит: это место- земля. Заземление соединяет все токоведущие части, которые в нормальном режиме работы не находиться под U, с землёй.Зануление – это соединение всех частей электроприбора, которые не должны находиться под U, с рабочим нулём. В данном случае, если произойдёт обрыв фазы на токоведущие части, находящиеся под рабочим нулём, то произойдёт короткое замыкание и автоматический выключатель обесточит электроприбор. Это конечно менее безопасно, чем заземление, короткое замыкание может стать причиной последующих неполадок в приборе. К сожалению, именно зануление является основным видом защиты в большинстве жилых помещений.

Заземление

Системы заземления

Рассмотрим системы, применяемые в бытовых помещениях:

  1. TN-C.
  2. TN-S.
  3. TN-C-S.
  4. ТТ.

TN-C

Первая буква Т означает, что нейтраль источника питания соединена с землёй, что значит, что проводник рабочего ноля на подстанции уходит в землю. Вторая буква- N – означает связь открытых токопроводящих частей электроустановки здания с точкой заземления источника питания. Третья буква- С -означает ,что защитный и рабочий ноль находятся на одном общем PEN, то есть рабочий ноль и является защитным. По сути, эта система и является тем самым «занулением». Самая небезопасная из систем. Все токоведущие части, которые не должны быть под U,находятся под рабочим нулём. Защита построена на действие автомата после короткого замыкания. Защитный и рабочий ноль находятся в одном проводнике до распределительного щита.

Система заземления TN-C

1.Открытые токопроводящие части.

2.Источник питания.

3.Распределительный щит на квартиру.

TN-S

Первые две буквы также, как и в предыдущей системе означают, что нейтраль источника питания связана с заземлением (которое расположено у источника питания) и открытые токопроводящие части электроустановки здания связаны с точкой заземления источника питания. Третья буква- S- значит, что нулевой и защитный PE и рабочий N находятся на разных проводниках (заземление). Это означает, что от электростанции отходят два отдельных провода на рабочий ноль и на заземление. Данная система является самой безопасной для многоэтажных зданий.

Система заземления TN-S

1.Открытые токопроводящие части.

2.Источник питания.

На представленной схеме видно, что от источника питания отходят два раздельных провода на рабочий ноль и на заземление, далее проводники не встречаются.

TN-C-S

Является модернизированной системой TN-C . Функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике в части сети, которая идёт от источника питания. Затем на определённом участке добавляется заземлённый проводник. Для многоэтажных домов обычно заземлённый проводник добавляют в ВРУ (вводное распределительное устройство на дом). Эта система также обеспечивает достаточную безопасность.

Система заземления TN-C-S

1.Открытые токопроводящие части.

2.Источник питания.

3.Распределительный щит на квартиру.

4.ВРУ.

На схеме представлена сеть до модернизации – система TN-C и после модернизации – система TN-C-S.

Система ТТ

Обычно применяется при постройке частных домов. Вторая буква Т значит, что заземление и рабочий ноль нигде не соединяются. О первой букве уже говорилось выше. В дом заходит так же, как и в системе ТN-S, три провода :рабочий ноль, фазный провод и заземляющий. Только вот заземляющий провод идёт не от источника питания (как в системе TN-S), а возле частного дома монтирован собственный контур заземления по всем правилам ПУЭ (правила устройства электроустановок), именно от заземляющего контура и идёт заземляющий провод.

Система заземления TT

1.Открытые токопроводящие части.

2.Источник питания.

3.Контур заземления у частного дома и отходящий от него проводник.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья?

Поделиться с друзьями:

Подпишитесь на новые

volgaproekt.ru

Система заземления «TN-C-S» | ЭлектроАС

Дата: 20 октября, 2009 | Рубрика: Статьи, ЭлектромонтажМетки: TN-C-S, Заземление, Заземление электрооборудования, Электромонтаж

Этот материал подготовлен специалистами компании "ЭлектроАС". Нужен электромонтаж или электроизмерения? Звоните нам!

Для тех, у кого есть хотя бы поверхностные знания об электрических сетях, и имеется минимальный опыт работы с прежними системами заземления «TN-C», не составит особого труда разобраться с более безопасным заземлением типа «TN-C-S». Главные и важные отличия, которых заключаются в обустройстве нулевых защитных (РЕ) и нулевых рабочих (N) проводников. Даже, несмотря на то, что обозначение «С», соотносит их к одному методу электромонтажа заземлений с использованием объединенного проводника «PEN». Поэтому, чтобы подробно разобраться в преимуществах и в работе систем заземления «TN-C-S», вкратце охарактеризуем принцип действия и причину запрещения электромонтажных работ по типу «TN-C», при запитывании к электричеству законченных объектов строительства.

Статьи цикла «Системы заземления»:

Итак, системы заземления «TN-C», по своей электрической схеме предусматривали использование одного единственного заземляющего проводника, исполняющего сразу две функции: рабочего – для приведения в действие электроприборов и устройств; и защитного – для сохранения оборудования электрических сетей, заметим, только электрических сетей, а не безопасности граждан и бытовых приборов. Такая ситуация, независимо от типа подключения «фаза-ноль» или «три фазы-ноль», нередко приводила к проскакиванию опасных для людей напряжений сквозь металлические поверхности и кожухи электрических устройств, а иногда через диэлектрические стены, двери, ручки и другие элементы зданий в сырую погоду. Причем, это из самых безобидных негативных явлений. Аварии с пробиванием напряжения на массу, с внутрикабельным сообщением или с наводками высоких токов на нулевую фазу, зачастую приводили к летальным исходам, даже при защитном отключении, так как нулевой проводник имел постоянное соединение.

Что касается систем заземлений «TN-C-S», то всего выше перечисленного нет. Это достигается, прежде всего, разделением функций защиты и рабочих нагрузок на отдельные шины при вводе в здание. То есть для однофазной разводки применяется трехжильный кабель, а для трехфазного – пятижильный. Наиболее приемлемым, является установка отдельного трансформатора непосредственно у запитываемого объекта, а также использование специальных розеток и устройств распределения с выводом клемм на защитный проводник. При этом защитный проводник «РЕ» соединяется со всеми токопроводными корпусами, оболочками и кожухами оборудований, устройств и приборов, и может быть дополнительно заземлен. А нулевой рабочий проводник «N», выполняет только функции электродвижущей силы, притом, что во время аварийного отключения, тоже отсоединяется от сети, тем самым, оберегая от вышеозначенных проблем.

Поэтому, очень важно осуществить переход от системы заземления «TN-C» к заземлению «TN-C-S», если вы проживаете в зданиях со старыми электропроводками. Это не только сохранит высокую безопасность людей, но и убережет ваши бытовые электроприборы. Только помните, что это дело лучше всего доверить специалистам, так как необходимо точно просчитать сечения и емкости электрических сопряжений, а при необходимости заменить всю электропроводку в помещениях.

Статьи цикла «Системы заземления»:

elektroas.ru

ТН-КРОВЛЯ Стандарт | Система плоской крыши ТехноНИКОЛЬ

Описание системы: 

В качестве пароизоляции по бетонному основанию применяется наплавляемый материал Биполь ЭПП. Биполь ЭПП надежно защищает кровельный пирог от насыщения паром, при этом устойчив к возможным механическим повреждениям в условиях монтажа. Гибкость материала до -15°С делает возможным устройство пароизоляции при отрицательных температурах.

Механическую прочность и надежность Системы ТН-КРОВЛЯ Стандарт обусловлена армированной стяжкой, которую устраивают поверх уклонообразующего слоя из керамзита.

В системе ТН-КРОВЛЯ Стандарт в качестве теплоизоляции применяется экструзионный пенополистирол ТЕХНОНИКОЛЬ CARBON PROF, обладающий низким водопоглощением и высокой прочностью на сжатие.

В системе используется двухслойный «дышащий» битумно-полимерный кровельный ковер, который позволяет избежать образования вздутий на ее поверхности, за счет применения в качестве нижнего слоя специального материала Унифлекс ВЕНТ ЭПВ. Верхний слой из битумно-полимерного материала Техноэласт ПЛАМЯ СТОП наплавляется на нижний слой кровли. Устройство системы осуществляется по традиционной схеме укладки кровельного пирога, хорошо зарекомендовавшей себя еще со времен применения рубероидной гидроизоляции.

Область применения:

Система ТН-КРОВЛЯ Стандарт применяется для устройства крыши на объектах промышленного и общественного назначения с несущими конструкциями из железобетона. Может применяться при капитальном ремонте крыши с заменой всех слоев изоляции.

Применение материала Техноэласт ПЛАМЯ СТОП с повышенными противопожарными характеристиками – РП1, В2 позволяет получить группу пожарной опасности кровли КП0, согласно таблице 5.2. СП 17.13330.2017 «Кровли», и применяться на крышах зданий большой площади без устройства противопожарных рассечек.

Согласно заключению ФГБУ ВНИИПО МЧС России кровельная конструкция имеет класс пожарной опасности К0 (45) и в зависимости от параметров железобетонной плиты предел огнестойкости REI 30 - REI 90, что позволяет применять систему в качестве покрытий в зданиях и сооружениях любой степени огнестойкости и с любым классом конструктивной пожарной опасности.

Гарантия на систему:

Гарантийный срок на водонепроницаемость системы ТН-КРОВЛЯ Стандарт составляет 15 лет.

Гарантия на водонепроницаемость систем выдаётся при использовании всех слоев системы, указанных в техлисте, и в случае выполнения всех рекомендаций специалистов Службы Качества на этапе монтажа системы.

Производство работ:

Согласно «Руководству по проектированию и устройству кровель из битумно-полимерных материалов Корпорации ТехноНИКОЛЬ.» 2017 г. и СТО 72746455-4.1.1-2016 «Изоляционные системы ТехноНИКОЛЬ. Крыши с водоизоляционным ковром из рулонных битумно-полимерных и полимерных материалов. Материалы для проектирования и правила монтажа. Москва 2016».

nav.tn.ru

ТН-КРОВЛЯ Стандарт КВ | Система плоской крыши ТехноНИКОЛЬ

Описание системы:

В качестве пароизоляции по бетонному основанию применяется наплавляемый материал Биполь ЭПП. Биполь ЭПП надежно защищает кровельный пирог от насыщения паром, при этом устойчив к возможным механическим повреждениям в условиях монтажа. Гибкость материала до -15°С делает возможным устройство пароизоляции при отрицательных температурах.

Механическая прочность и надежность Системы ТН-КРОВЛЯ Стандарт КВ обусловлена армированной стяжкой, которую устраивают поверх уклонообразующего слоя из керамзита.

В системе ТН-КРОВЛЯ Стандарт КВ в качестве теплоизоляции применяют негорючий утеплитель из каменной ваты ТЕХНОРУФ Н ПРОФ, что дает возможность использовать систему при устройстве крыш зданий с любым классом функциональной пожарной опасности, в том числе Ф1.1.

В системе используется двухслойный «дышащий» битумно-полимерный кровельный ковер, который позволяет избежать образования вздутий на ее поверхности, за счет применения в качестве нижнего слоя специальный материал Унифлекс ВЕНТ ЭПВ. Верхний слой из битумно-полимерного материала Техноэласт ПЛАМЯ СТОП наплавляется на нижний слой кровли. Устройство системы осуществляется по традиционной схеме укладки кровельного пирога, хорошо зарекомендовавшей себя еще со времен применения рубероидной гидроизоляции.

Область применения:

Система ТН-КРОВЛЯ Стандарт КВ применяется для устройства крыш с любым классом функциональной пожарной опасности на объектах промышленного и общественного назначения с несущими конструкциями из железобетона. Может применяться при капитальном ремонте крыши с заменой всех слоев изоляции.

Применение материала Техноэласт ПЛАМЯ СТОП с повышенными противопожарными характеристиками – РП1, В2 позволяет получить группу пожарной опасности кровли КП0, согласно таблице 5.2. СП 17.13330.2017 «Кровли», и применяться на крышах зданий большой площади без устройства противопожарных рассечек.

Согласно заключению ФГБУ ВНИИПО МЧС России кровельная конструкция имеет класс пожарной опасности К0 (45) и в зависимости от параметров железобетонной плиты предел огнестойкости REI 30 - REI 90, что позволяет применять систему в качестве покрытий в зданиях и сооружениях любой степени огнестойкости и с любым классом конструктивной пожарной опасности.

Гарантия на систему:

Гарантийный срок на водонепроницаемость системы ТН-КРОВЛЯ Стандарт КВ составляет 15 лет.

Гарантия на водонепроницаемость систем выдаётся при использовании всех слоев системы, указанных в техлисте, и в случае выполнения всех рекомендаций специалистов Службы Качества на этапе монтажа системы.

Производство работ:

Согласно «Руководству по проектированию и устройству кровель из битумно-полимерных материалов компании ТехноНИКОЛЬ» 2017 г. и СТО 72746455-4.1.1-2016 «Изоляционные системы ТехноНИКОЛЬ. Крыши с водоизоляционным ковром из рулонных битумно-полимерных и полимерных материалов. Материалы для проектирования и правила монтажа. Москва 2016».

nav.tn.ru