Генератор на. Принцип работы генератора. Принцип работы генератора постоянного тока
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Генератор тока. Устройство и прицип действия генератора. Генератор на


Автомобильный генератор: устройство и принцип работы

В любом автомобиле имеется навесное оборудование. Это узлы и механизмы, без которых его работа не представляется возможной. К навесному оборудованию относится стартер, насос гидроусилителя, компрессор кондиционера, впускной и выпускной коллектор, сцепление. Но также в этот список входит и автомобильный генератор. Именно он позволяет поддерживать стабильное напряжение в бортовой сети. Мало кто знает устройство автомобильного генератора и его принцип работы. А ведь эта информация будет полезна для каждого водителя. Что же, давайте рассмотрим, как устроен и действует данный навесной элемент.

Характеристика

Генератор – это электрический двигатель, который служит для преобразования механической энергии в ток.

Используется данный элемент для питания электрического оборудования при работающем ДВС, а также для зарядки аккумулятора автомобиля. На всех современных машинах применяется автомобильный генератор переменного тока.

Где находится

Зачастую данный механизм находится в передней части двигателя. Работает он от коленчатого вала посредством ремня (ручейкового или зубчатого типа). Обычно автопроизводители располагают генератор в максимально верхней точке относительно двигателя. Однако встречаются модели, где механизм крепится чуть ли не в районе картера ДВС. Почему важно расположить механизм в максимально верхней точке? Дело в том, что автомобильный генератор сильно боится воды. Попадание даже небольшого количества влаги может вывести его из строя. Поэтому производители стараются исключить возможность проникновения воды и иных жидкостей на поверхность данного механизма. Чем выше расположен данный элемент, тем это для него безопаснее.

Устройство

В конструкцию генератора входят:

  • Обмотка статора.
  • Передняя крышка.
  • Обмотка возбуждения.
  • Щеточный узел.
  • Задняя крышка.
  • Контактные кольца.
  • Полюсные половины.
  • Выпрямительный блок.
  • Шкив приводной.
  • Крыльчатка вентилятора.

Также отметим, что данный узел может иметь разную компоновку:

  • Традиционную.
  • Компактную.

Отличия заключаются в строении вентилятора, выпрямительного узла и приводного шкива. В остальном же устройство и работа автомобильного генератора идентичны. И традиционный, и компактный механизм состоят из ротора, выпрямительного блока, щеточного узла, регулятора напряжения и статора. Для чего служат все эти компоненты, рассмотрим далее.

Ротор

Данный механизм служит для создания магнитного поля в генераторе. На валу ротора предусмотрена обмотка возбуждения. Последняя помещается в специальные полюсные пластины, каждая из которых имеет шесть выступов. Кроме этого, на валу располагается контактное кольцо. Оно служит для питания обмотки возбуждения. Обычно кольца изготавливают из меди (реже – из латуни). К данным элементам припаиваются выводы обмотки возбуждения.

Также на валу ротора находится одна или две крыльчатки вентилятора. Они обеспечивают охлаждение обмотки во время работы генератора. Вращающийся механизм ротора являет собой два шариковых необслуживаемых подшипника.

Статор

Его функция – создание переменного тока. Автомобильный генератор обязательно оснащается данным элементом. Статор конструктивно объединен с обмоткой и сердечником. Последний представляет собой набор из нескольких пластин. В 36 пазах обмотки находятся еще по три обмотки, которые образуют трехфазное соединение. Производители используют два типа укладки обмоток:

  • Волновой.
  • Петлевой.

Само соединение осуществляется по разным технологиям:

  • Схема «треугольник». В данном случае концы обмотки соединены последовательно.
  • Схема «звезда». Здесь концы обмотки соединены в единой точке.

Корпус

В нем находится большинство составных элементов генератора. Состоит корпус из двух крышек: задней и передней. Первая находится со стороны контактных колец, вторая – со стороны приводного шкива.

Между собой эти части стянуты длинными болтами. Сами крышки изготавливаются из немагнитного алюминиевого сплава. В корпусе также предусмотрены вентиляционные окна и крепежные лапы в количестве двух штук.

Щетки и выпрямительный блок

Щеточный узел служит для передачи тока от обмотки возбуждения на контактные кольца. Как устроен данный узел? Он являет собой две графитные щетки с пружинами. Вся конструкция объединена с регулятором напряжения автомобильного генератора.

Теперь о выпрямительном блоке. Он необходим для преобразования синусоидального напряжения в постоянный ток бортовой сети. Состоит данный блок из пластин. Они выполняют функцию теплоотвода, а также на них монтируются диоды. Всего в блоке находится шесть полупроводниковых диодов. На каждую фазу приходится по два таких элемента. Один подключается к положительному, а второй – к отрицательному выводу автомобильного генератора. Обычно соединение осуществляется при помощи пайки либо сварки на монтажных площадках.

Регулятор напряжения

Продолжаем изучать устройство автомобильного генератора. В конструкции механизма всегда присутствует регулятор напряжения (на сленге автомобилистов – «шоколадка»). Данный элемент может иметь:

  • Гибридное соединение. В таком случае все радиоэлементы и электроприводы используются в схеме с микроэлектронными толстопленочными элементами.
  • Интегральное. Здесь все элементы регулятора, за исключением выходного каскада, выполняются путем тонкопленочной микроэлектронной технологии.

Основная задача «шоколадки» состоит в стабилизации напряжения, которое может варьироваться при изменении числа оборотов коленвала и общей нагрузки бортовой сети.

Данная коррекция осуществляется автоматически благодаря воздействию на ток обмотки возбуждения. Регулятор изменяет продолжительность и частоту импульсов тока. Современные генераторы имеют регуляторы с термокомпенсацией. Таким образом, чем ниже температура аккумулятора, тем больше напряжения подается на его заряд.

Привод генератора

На всех автомобилях данное оборудование приводится в действие от коленчатого вала посредством ремня. Последний может быть клинового либо поликлинового типа. Область применения первого существенно ограничена диаметром ведомого шкива. Число оборотов ротора при работе двигателя обычно в два или три раза выше частоты вращения коленвала.

Зачастую на автомобилях используется поликлиновый ремень. Он является более универсальным, поскольку при небольшом диаметре ведомого шкива ремень позволяет реализовать большее передаточное число. Натяжение приводного элемента регулируется при помощи специального ролика.

Принцип работы автомобильного генератора

Как действует данное оборудование? Принцип работы его заключается в следующем. При повороте ключа, через щеточный узел и кольца на обмотку возбуждения поступает ток от АКБ. В обмотке наводится магнитное поле. При вращении коленвала ДВС одновременно работает и ротор генератора. Магнитное поле последнего пронизывает обмотку статора. На выводах образуется переменное напряжение. При определенной частоте вращения генератор начинает самовозбуждаться. Таким образом, обмотка запитывается от самого генератора.

Выпрямительный блок начинает преобразовать данное напряжение в постоянный ток. С изменением нагрузки на двигатель начинает включаться в работу т. н. «шоколадка». Регулятор корректирует периодичность включения обмотки генератора. С ростом числа оборотов время включения уменьшается. И наоборот, при падении нагрузки периодичность увеличивается.

Бесщеточный генератор

На некоторых автомобилях устанавливается бесщеточный механизм. В своей конструкции он имеет ротор со спрессованными пластинами из трансформаторного железа. На статоре размещена обмотка. А электродвижущая сила образуется путем коррекции магнитной проводимости зазора между статором и ротором.

Автомобильный генератор: характеристики

К основным параметрам данного механизма стоит отнести:

  • Номинальный ток. Таковым считается пиковый ток отдачи при частоте вращения шесть тысяч оборотов в минуту.
  • Номинальное напряжение. В зависимости от типа электросистемы автомобиля, данный параметр составляет 12 или 24 В. На большинстве легковых авто и внедорожников используется 12-вольтовая схема.
  • Мощность. Автомобильный генератор может быть как 60-, так и 120-амперным. Все зависит от типа машины и объема самого двигателя. Если говорить о большинстве легковушек, в них зачастую используется 80-амперный генератор.

Диагностика

Можно ли проверить состояние автомобильного генератора своими руками? Специалисты говорят, что продиагностировать элемент можно в гаражных условиях при помощи обычного мультиметра. Но перед этим нужно проверить подключение автомобильного генератора, а также убедиться в работоспособности всех соединений. Открываем капот автомобиля и находим приводной ремень. Он должен быть натянут с такой силой, при которой он будет прогибаться на 1-1,5 сантиметра вглубь от нажатия большого пальца. Если говорить о точных значениях, данный прогиб измеряется при усилии в 10 кгс.

На первом этапе производится проверка регулятора напряжения. Для этого переводим мультиметр в режим вольтметра. Прогреваем мотор на средних оборотах с включенными фарами в течение десяти минут. Далее измеряем напряжение на выводе массы генератора и на его плюсе. Номинальный показатель – от 13,5 до 14,6 В. Если цифра меньше или больше, значит, регулятор не справляется со своей задачей, и его нужно заменить.

Далее переходим к диагностике диодного моста. Включаем прибор в режим измерения переменного тока. Подключаем щупы к зажиму «30» и к массе генератора. Напряжение должно составлять не больше 0,5 В. В противном случае диодный мост работает неверно. Чтобы проверить пробой на массу, отключаем генератор и снимаем шнур генератора, что подходит к плюсовой 30-й клемме. Далее подключаем мультиметр щупами к отключенному приводу генератора и клеммой. Ток разряда не должен превышать 0,5 мА. Если он больше, произошел пробой изоляции обмотки или самих диодов.

Проверяем ток отдачи

Обратите внимание: сила тока отдачи измеряется при помощи зонда, который является дополнением мультиметра. Данный элемент являет собой некий зажим, при помощи которого охватываются провода, и измеряется сила тока. Итак, как нам проверить генератор? Для этого охватываем зондом провод, идущий к зажиму на 30-й клемме. Запускам двигатель и держим его на высоких оборотах. Включаем свет, печку и остальные электроприборы. Далее поочередно производим замер каждого потребителя в индивидуальном порядке. Величина замера не должна превосходить сумму показаний каждого потребителя. Максимальное расхождение - 5 ампер в меньшую сторону.

Не лишней будет проверка тока возбуждения генератора. Для этого заводим двигатель и даем ему поработать минут пять на высоких оборотах. Далее располагаем вокруг провода с клеммой 67 измерительный зонд. Показания будут равны силе тока возбуждения. На исправном генераторе данный показатель составляет порядка трех-семи ампер.

Для проверки обмотки возбуждения нужно демонтировать «шоколадку» и щеткодержатель. Переводим прибор в режим омметра и прикладываем щупы к контактным кольцам. Уровень сопротивления должен составлять от пяти до десяти Ом. Затем подключаем один щуп к статору. Второй держим на любом из контактных колец. Прибор должен показывать бесконечно большое сопротивление. Если это не так, значит, обмотка замыкает на массу.

Заключение

Итак, мы выяснили, что собой представляет автомобильный генератор и как его проверить. Как видите, диагностику можно осуществить своими руками. Однако чтобы разбираться в этом вопросе, нужно хотя бы поверхностно знать устройство и алгоритм работы элемента.

fb.ru

Принцип работы генератора. Принцип работы генератора постоянного тока :: SYL.ru

Генератор – это устройство, которое производит продукт, вырабатывает электроэнергию либо создает электромагнитные, электрические, звуковые, световые колебания и импульсы. В зависимости от функций их можно разделить на виды, которые мы рассмотрим далее.

Генератор постоянного тока

Для того чтобы понять принцип работы генератора постоянного тока, нужно выяснить его основные характеристики, а именно зависимости главных величин, которые и определяют работу устройства в применяемой схеме возбуждения.

Основной величиной является напряжение, на которое влияет скорость вращения генератора, токовозбуждения и нагрузки.

Основной принцип работы генератора постоянного тока зависит от воздействия раздела энергии на магнитный поток основного полюса и, соответственно, от получаемого с коллектора напряжения при неизменном положении щеток на нем. У аппаратов, которые оснащены добавочными полюсами, элементы располагаются таким образом, чтобы токораздел полностью совпадал с геометрической нейтральностью. Благодаря этому, он будет смещаться по линии вращения якоря в положение оптимальной коммутации с последующим закреплением щеткодержателей в таком положении.

Генератор переменного тока

Принцип работы генератора переменного тока основан на превращении механической в электроэнергию благодаря вращению проволочной катушки в созданном магнитном поле. Это приспособление состоит из неподвижного магнита и проволочной рамки. Каждый из ее концов соединяется между собой при помощи контактного кольца, которое скользит по электропроводной угольной щетке. За счет такой схемы электрический индуцированный ток начинает переходить к внутреннему контактному кольцу в тот момент, когда половина рамки, соединяющаяся с ним, проходит мимо северного полюса магнита и, наоборот, к внешнему кольцу в тот момент, когда другая часть проходит мимо северного полюса.

Самый экономичный способ, на котором основывается принцип работы генератора переменного тока, является сильная выработка. Это явление получается за счет использования одного магнита, который вращается относительно нескольких обмоток. Если его вставить в проволочную катушку, он начнет индуцировать электрический ток, таким образом будет заставлять стрелку гальванометра отклонятся в сторону от положения «0». После того как магнит будет вынут из кольца, ток поменяет свое направление, а стрелка прибора начнет отклоняться в другую сторону.

Автомобильный генератор

Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор – током.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.

Электрический генератор

Принцип работы электрического генератора заключается в переработке энергии механической на электрическое поле. Основными источниками такой силы могут быть вода, пар, ветер, двигатель внутреннего сгорания. Принцип работы генератора основывается на совместном взаимодействии магнитного поля и проводника, а именно в момент вращения рамки ее начинают пересекать линии магнитной индукции, и в это время появляется электродвижущая сила. Она заставляет ток протекать по рамке при помощи контактных колец и вливаться во внешнюю цепь.

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию. Такие приборы применяют как временные, а также постоянные источники питания. Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения. Всего этого можно добиться, используя инверторный генератор, принцип работы которого основан на постоянстве и проходит по такой схеме:

  1. Выработка высокочастотного переменного тока.
  2. Благодаря выпрямителю преобразуется полученный ток в постоянный.
  3. Затем образуется накопление тока в аккумуляторах и стабилизируется колебания электроволн.
  4. При помощи инвертора постоянная энергия меняется на переменный ток нужного напряжения и частоты, а затем поступает к пользователю.

Дизельный генератор

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Синхронный генератор

Принцип работы синхронного генератора основан на одинаковой чистоте вращения магнитного поля статора и ротора, который и создает вместе с полюсами магнитное поле, и оно пересекает обмотку статора. В этом агрегате ротор - постоянный электромагнит, число полюсов которого может начинаться от 2-х и выше, но кратным они должны быть 2-м.

При запуске генератора ротор создает слабое поле, но после увеличения оборотов начинает появляться большая сила в обмотке возбуждения. Получаемое напряжение через автоматический блок регулировки поступает на устройство и контролирует выходное напряжение за счет изменений в магнитном поле. Основной принцип работы генератора заключается в высокой стабильности исходящего напряжения, а недостатком является существенная возможность перегрузок по току. Еще к негативным качествам можно добавить присутствие щеточного узла, который все равно в определенное время придется обслуживать, а это само собой влечет дополнительные финансовые затраты.

Асинхронный генератор

Принцип работы генератора заключается в постоянном нахождении в режиме торможения с ротором, который вращается с опережением, но все-таки в той же ориентации, что и магнитное поле у статора.

В зависимости от используемого типа обмотки ротор может быть фазным или короткозамкнутым. Созданное при помощи вспомогательной обмотки вращающееся магнитное поле начинает индуцировать его на роторе, которое и вращается вместе с ним. Частота и напряжение на выходе напрямую зависит от количества оборотов, так как магнитное поле не регулируется и остается неизменным.

Электрохимический генератор

Также существует электрохимический генератор, устройство и принцип работы которого заключаются в выработке из водорода электрической энергии в автомобиле для его движения и питания всех электроприборов. Этот аппарат является химическим источником тока, так как он производит энергию за счет прохождения реакции кислорода и водорода, который для выработки топлива используется в газообразном состоянии.

Генератор акустических помех

Принцип работы генератора акустических помех заключается в защите организаций и физических лиц от прослушивания переговоров и различного рода мероприятий. За ними можно проследить через оконные стекла, стены, системы вентиляции, отопительные трубы, радиомикрофоны, проводные микрофоны и устройства лазерного съема полученной акустической информации с окон.

Поэтому фирмы очень часто для защиты своей конфиденциальной информации используют генератор, устройство и принцип работы которого заключается в настройке аппарата на заданную частоту, если она известна, либо на определенный диапазон. Затем создается универсальная помеха в виде шумового сигнала. Для этого в самом аппарате находится генератор шума нужной мощности.

Также существуют и генераторы, которые находятся в шумовом диапазоне, благодаря которым можно замаскировать полезный звуковой сигнал. В этот комплект входит блок, который и формирует шум, а также его усиления и акустические излучатели. Основным недостатком использования таких устройств являются помехи, которые появляются при проведении переговоров. Для того чтобы аппарат справлялся полностью со своей работой, переговоры стоит проводить всего лишь в течение 15 минут.

Регулятор напряжения

Основной принцип работы регулятора напряжения основывается на поддерживании энергии бортовой сети во всех режимах работы при разнообразном изменении частоты поворотов ротора генератора, температуры внешней среды и электрической нагрузки. Этот прибор также может выполнять и второстепенные функции, а именно защищать части генераторной установки от возможного аварийного режима установки и перегрузки, автоматически подключать в бортовую систему цепь обмотки возбуждения либо сигнализацию аварийной работы устройства.

Все такие приборы работают по одному принципу. Напряжение в генераторе определяется несколькими факторами – силой тока, частотой вращения ротора и величиной магнитного потока. Чем меньше нагрузка на генератор и выше частота вращения, тем будет больше напряжение устройства. Благодаря большему току в обмотке возбуждения начинает увеличиваться магнитный поток, а с ним и напряжение в генераторе, а после того, как уменьшается ток, становится меньшим и напряжение.

Независимо от производителя таких генераторов, все они нормализуют напряжение изменением тока возбуждения одинаково. При возрастании либо уменьшении напряжения начинает увеличиваться либо уменьшаться ток возбуждения и проводить напряжение в необходимые пределы.

В повседневной жизни использование генераторов очень помогает человеку в решении множества возникающих вопросов.

www.syl.ru

Устройство и принцип работы генератора

Ответственность за подачу электроэнергии к источникам потребления в транспортном средстве с двигателем внутреннего сгорания лежит на генераторе. Без него практически невозможно представить современный мотоцикл или автомобиль. В статье мы раскроем принцип работы генератора, основные его узлы и элементы.

Принцип работы

Когда водитель проворачивает ключ зажигания, электрическая энергия подается на стартер. Этот прибор в первые секунды работы автомобиля является единственным, кто питается от аккумулятора (АКБ) и помогает вращать коленвал. После запуска силовой установки вращение двигателя через ременную передачу передается на генератор.

Практически сразу же аккумулятор из источника превращается в потребителя энергии и начинает возвращать себе заряд. Теперь генератор при работающем моторе становится источником электричества.

Принцип работы автомобильного генератора заключается в том, что он получает механическую энергию вращения от двигателя и превращает в электрическую энергию.

При отсутствии этого прибора в автомобилях заряда аккумулятора не хватало бы на длительную работу. Но с генератором получается не только отсутствие разрядки, но и процесс подзарядки. Мощности его хватает на работу всех установленных электроприборов, влияющих на работоспособность машины, а также повышающих комфорт водителя и пассажиров.

Когда в автомобиле одновременно запускается несколько энергоемких потребителей, то мощности генератора может не хватать, в таком случае на помощь ему приходит аккумулятор. Благодаря такой связанной системе потребитель не замечает неудобств, а оба прибора создают оптимальный вариант работы электроузлов в машине.

Требования по автогенератору

Устройство и принцип работы генератора накладывают не наго определенные обязательства по выполнению своих функций. Основные требования состоят из таких пунктов:

  1. одновременное и бесперебойное снабжение электричеством необходимые узлы, а также зарядка АКБ;
  2. во время работы мотора на низких оборотах не должно происходить существенного отбора заряда у АКБ;
  3. уровень напряжения в сети должен быть стабилен;
  4. генератор должен быть прочным, надежным, с низким уровнем шума и не создавать радиопомехи.

Крепление и привод устройства

Привод во всех автомобилях имеет стандартный вид: шкив, установленный на коленчатом валу, через ременную передачу соединен со шкивом на валу ротора устройства. Размеры шкивов в передаче устанавливаются из необходимости получения заданного числа оборотов на генераторе.

Крепление на блоке

В современных автомобилях использую поликлиновые ремни. С их помощью можно передавать большее количество оборотов на ротор генератора.

Аппарат крепится к корпусу блока в подкапотном пространстве. Там же устанавливается натяжитель для ремня. Он необходим для установления качественной передачи вращения, чтобы исключать проскальзывание ремня по шкиву. В противном случае электричество переключится на использование АКБ, что приведет к его полной и незаметной разрядке.

Принято выделять две группы конструктивно отличающихся генераторов:

  1. устройства с вентилятором рядом с приводным шкивом принято считать традиционной конструкцией;
  2. конструкция, в которой установлены два вентилятора в корпусе аппарата, считается более новой и относится к компактным устройствам.

Устройство генератора

Основными частями любого генератора являются неподвижный блок – статор и вращающийся элемент конструкции – ротор. В статоре находится обмотка из медных проводов. Он с двух сторон зафиксирован крышками, как правило, из легких алюминиевых сплавов. Со стороны крепления шкива – передняя крышка, а со стороны щеток – задняя.

С задней части к щеточному механизму устанавливается регулятор напряжения. Там же расположен выпрямительный блок. Крышки фиксируют статор и крепятся между собой с помощью нескольких винтов. Лапы, с помощью которых генератор закреплен на корпусе автомобиля, отливаются вместе с крышками. Таким же образом получается натяжное ухо.

В отверстии одной из лап может быть установлена втулка, которая помогает отрегулировать установку генератора на кронштейн, выбирая необходимый зазор. Также ухо натяжного механизма снабжается несколькими отверстиями для установки аппарата на автомобили различных марок.

Статор

То, как работает генератор, зависит от качественного выполнения своих функций каждого их блоков. Основа статора набирается из одинаковых листовых стальных элементов толщиной до 1 мм. Если основа статора (пакет из пластин) сделана с помощью навивки, то ярмо блока содержит выступы, располагающиеся под пазами. За такие выпуклости проводится фиксация слоев обмотки. Также выступы помогают лучшему охлаждению всей конструкции.

Статор генератора

Почти во всех генераторах число пазов одинаковое. Их, как правило, в серийных авто 36. Изоляция проводится между ними с помощью эпоксидного изолятора.

Ротор

Для автомобильных генераторов основной отличительной чертой является полюсное устройство роторов. Обмотка этого узла закрыта двумя штампованными металлическими чашеобразными половинами, с выступающими клювообразными лепестками. Они фиксируются на валу, как бы обхватывая обмотку этими лепестками.

На валу устанавливаются подшипники, один из концов вала имеет резьбу со шпоночным пазом и посадочную поверхность под шкив.

Ротор генератора

Щеточный узел

В этом блоке установлены скользящие контакты. В автогенераторах принять использовать два вида щеток:

  • электрографитные;
  • меднографитные.

В первом случае наблюдается периодическое снижение напряжения при контактах с кольцом. Это приводит к некачественной работе генератора, подающего в такой ситуации нестабильное напряжение. Однако, у них есть и положительный эффект, ведь происходит меньший износ, в отличие от медных.

Выпрямительные блоки

Есть два основных типа выпрямительных узлов:

  1. в первом случае – в пластины-теплоотводы проводится запрессовка диодов;
  2. во втором случае – используются конструкционные ребра, в которых диоды паяются к теплоотводам.

Пластины теплоотводов

Замыкание таких пластин очень опасно для всего автомобиля. Виной такому происшествию – загрязнение, попавшее между пластинками. Оно может оказаться токопроводящим и замкнуть положительную сторону электропроводки с отрицательной.

Замыкание между пластинами может привести к пожару в автомобиле.

Чтобы избежать такого развития событий, на производстве проводится индивидуальное покрытие каждой пластины изоляционным слоем.

Подшипники

В конструкции используются шариковые подшипники. При производстве генераторов они получают смазочный материал на весь эксплуатационный срок. Американскими автопроизводителями иногда используются роликовые подшипники. Посадка со стороны контактной группы обычно «с натягом», а со стороны шкива применяется скользящая посадка. Обратная логика используется при установке в посадочные места крышки.

Демонтаж подшипников генератора

Проворот со стороны контактной группы наружной обоймы подшипника приводит к выходу из строя этой сопрягающейся пары (подшипник/крышка).

Так, ротор может задевать статор. Чтобы избежать этого, часто ставят дополнительные уплотнения в крышку: пластиковая втулка, резиновое кольцо.

Охлаждение генератора

Понижение рабочей температуры осуществляется с помощью, установленных на валу ротора вентиляторов. Традиционная конструкция предполагает подачу воздуха на крышку устройства со стороны контактной группы. При внешнем расположении щеточного узла подача охлаждения проводится через защитный кожух, закрывающий контакты со щетками.

Автомобили с компактной расстановкой узлов под капотом часто оснащаются генератором со специальным дополнительным кожухом. Поступление холодного заборного воздуха обеспечивается через его прорези. В генераторах с компактной конструкцией охлаждение проводится с обеих сторон крышек за счет наличия двух вентиляторов.

Регулятор напряжения

Также во всех современных генераторах установлены полупроводниковые электронные регуляторы напряжения. Регулятор обеспечивает теплокомпенсацию. Напряжение, подводимое к АКБ, зависит от подкапотной температуры. Чем воздух холоднее, тем большее напряжение подается на аккумулятор.

Интересное по теме:

загрузка...

Facebook

Twitter

Вконтакте

Одноклассники

Google+

ktonaavto.ru

Мощный генератор ВЧ на MOSFET-транзисторе — Gnativ.ru

Юным радиолюбителям посвящается…

Предисловие

Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…

Когда я только начинал заниматься радиоделом,  мне очень хотелось построить  портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…

Я помню свой первый радиопередатчик.  В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных  весенних  дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд  и счастлив, что мне доверили столь почетную миссию, но мои знания электроники  на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая  из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники.  Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц.), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…

У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес  (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный  радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…

Схема устройства

В мире существует огромное количество схем генераторов, способных генерировать колебания различной частоты и мощности. Обычно, это достаточно сложные устройства на диодах, лампах, транзисторах или других активных элементах. Их сборка и настройка требует некоторого опыта и наличия дорогих приборов. И чем выше частота и мощность генератора, тем сложнее и дороже нужны приборы, тем опытнее должен быть радиолюбитель в данной теме.

Но сегодня, мне бы хотелось рассказать о достаточно мощном генераторе ВЧ, построенном всего на одном транзисторе. Причем работать этот генератор может на частотах до 2ГГц и выше и генерировать достаточно большую мощность — от единиц до десятков ватт, в зависимости от типа применяемого транзистора. Отличительной особенностью данного генератора, является использование симметричного дипольного резонатора, своеобразного открытого колебательного контура с индуктивной и емкостной связью.  Не стоит пугаться такого названия — резонатор представляет собой две параллельные металлические полоски, расположенные на небольшом расстоянии друг от друга.

Свои первые опыты с генераторами подобного вида я проводил ещё в начале 2000-х годов, когда для меня стали доступны  мощные ВЧ-транзисторы.  С тех пор я периодически возвращался к этой теме, пока в середине лета на сайте VRTP.ru  не возникла тема по использованию мощного однотранзисторного генератора в качестве источника ВЧ-излучения для глушения бытовой техники (музыкальных центров, магнитол, телевизоров) за счет наведения модулированных ВЧ-токов в электронных схемах этих устройств. Накопленный материал и лег в основу данной статьи.

Схема мощного генератора ВЧ, достаточно проста и состоит из двух основных блоков:

  1. Непосредственно сам автогенератор ВЧ на транзисторе;
  2. Модулятор — устройство для периодической манипуляции (запуска) генератора ВЧ сигналом звуковой (любой другой) частоты.

Детали и конструкция

«Сердцем» нашего генератора является высокочастотный MOSFET-транзистор. Это достаточно дорогостоящий и мало распространенный элемент. Его можно купить за приемлемую цену в китайских интернет-магазинах или найти в высокочастотном радиооборудовании — усилителях/генераторах высокой частоты, а именно, в платах базовых станций сотовой связи различных стандартов. В своем большинстве эти транзисторы разрабатывались именно под данные устройства.Такие транзисторы, визуально и конструктивно отличаются от привычных с детства многим радиолюбителям КТ315 или МП38 и представляют собой «кирпичики» с плоскими выводами на мощной металлической подложке. Они бывают маленькие и большие в зависимости от выходной мощности. Иногда, в одном корпусе располагаются два транзистора на одной подложке (истоке). Вот как они выглядят:

Линейка внизу, поможет вам оценить их размеры. Для создания генератора могут быть использованы любые MOSFET-транзисторы. Я пробовал в генераторе следующие транзисторы: MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, PTFA211801E — все они работают. Вот как данные транзисторы выглядят внутри:

Внутренняя структура мощного MOSFET транзистора PTFA211801E

Вторым, необходимым материалом для изготовления данного устройства является медь. Необходимы две полоски данного металла шириной 1-1,5см. и длинной 15-20см (для частоты 400-500 МГц). Можно сделать резонаторы любой длинны, в зависимости от желаемой частоты генератора. Ориентировочно, она равна 1/4 длинны волны.Я использовал медь, толщиной 0,4 и 1 мм. Менее тонкие полоски — будут плохо держать форму, но в принципе и они работоспособны. Вместо меди, можно использовать и латунь. Резонаторы из альпака (вид латуни) тоже успешно работают. В самом простом варианте, резонаторы можно сделать из двух кусочков проволоки, диаметром 0,8-1,5 мм.

Помимо ВЧ-транзистора и меди, для изготовления генератора понадобится микросхема 4093 — это 4 элемента 2И-НЕ с триггерами Шмитта на входе. Её можно заменить на микросхему 4011 (4 элемента 2И-НЕ) или её российский аналог — К561ЛА7. Также можно использовать другой генератор для модуляции, например, собранный на таймере 555. А можно вообще исключить из схемы модулирующую часть и получить просто ВЧ-генератор.

В качестве ключевого элемента применен составной p-n-p транзистор TIP126 (можно использовать TIP125 или TIP127, они отличаются только максимально допустимым напряжением). По паспорту он выдерживает 5А, но очень сильно греется. Поэтому необходим радиатор для его охлаждения. В дальнейшем, я использовал P-канальные полевые транзисторы типа IRF4095 или P80PF55.

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:Эта плата рассчитана на транзистор типа MRF19125 или PTFA211801E. Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины).Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором.Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.

Запуск устройства

Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора).Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.

ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:

При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.

Т.н. «факел» на конце резонатора.

Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).

Плазменная дуга между резонаторами ВЧ-генератора на транзисторе MRF284

Применение устройства

Конечно, данный ВЧ-генератор — не отличается особой стабильностью частоты. Разница частот может достигать 100-200 МГц при использовании модулятора или без него. Но при желании, потратив время на настройку и подбор расстояния между резонаторами, можно добиться стабильности частоты +/- 2-10 МГц. Главная ценность данного генератора — получение достаточно высокой мощности ВЧ, при использовании минимума деталей. В зависимости от типа применяемого транзистора, устройство может генерировать достаточно значительную мощность. В команде TeslaCoilRu, подобное устройство применено для ионизации различных смесей газов в плазменных шарах. Это смотрится фантастично, посмотрите фотографии и видео на их сайте.

Помимо этого, наш генератор может быть применен для изучения воздействия ВЧ-излучения на различные устройства, бытовую аудио и радиоаппаратуру с целью изучения их помехоустойчивости. Ну и конечно, с помощью данного генератора можно послать сигнал в космос, но это уже другая история…

Все материалы по автогенератору ВЧ (схема, плата) вы можете взять здесь в формате Visio. Настоятельно рекомендую начинать эксперименты с небольшими транзисторами (типа MRF284 или MRF6522). Они легко возбуждаются на частотах до 1600-1800 МГц и не очень критичны к форме резонаторов. Большие транзисторы требуют значительной мощности на затворе для поддержания автогенерации, то есть резонатор должен быть достаточно крупным. Помните, что нельзя допускать КЗ резонаторов, это приведет к выходу транзистора из строя. В большей части случаев, подстроечный конденсатор можно не использовать — хватает паразитных емкостей на плате. Но при навесном монтаже этот конденсатор может понадобиться. Экспериментируйте и у вас все получится!

P.S. Не следует путать этот ВЧ-автогенератор с различными EMP-jammers. Там генерируются импульсы высокого напряжения, а наше устройство генерирует излучение высокой частоты.

P.P.S. Для тех экспериментаторов, у кого возникло желание создать подобное устройство и провести с ним опыты, но нет необходимых MOSFET транзисторов — обращайтесь на почту: [email protected]. У меня есть значительный запас, думаю по цене договоримся.

Часть 2. Небольшое дополнение, другие генераторы >>>Экспериментальный качер Бровина >>>

gnativ.ru

Генератор на ВАЗ 2110: схема, его устройство, какой лучше выбрать

Содержание:

  1. Как он работает
  2. Технические параметры
  3. Какой лучше выбрать

Генератор — это основа функционирования всего автомобиля. Его можно сравнить с сердцем человека, поскольку на генератор возлагается ответственность по транспортировке электричества по всем системам и узлам, которые зависят от электрики. Механическая энергия преобразуется в электричество.

Как и любой другой элемент машины, генератор ВАЗ 2110 имеет свои особенности, функции, принцип работы. Сегодня мы будем знакомиться с ним максимально детально.

Внешний вид устройства

Как он работает

Для начала разберемся, как функционирует это устройство. Схема работы у него следующая:

  • Вставляется ключ в замок зажигания;
  • Ток идет на провода возбуждения;
  • Создаваемое якорем магнитное поле проходит через обмотки статора, на его выводах появляется напряжение;
  • Когда частота вращения якоря становится достаточно большой, начинается режим самовозбуждения;
  • Предусмотренный конструкцией авто выпрямительный блок превращает переменный ток в постоянный;
  • Начинает работать регулятор напряжения при изменении частоты вращения коленвала, осуществляется регулировка времени, на которое активируется провод возбуждения.

Представленное видео позволит вам наглядно познакомиться с принципом действия генератора.

Функции

Новичков очень интересует самый главный вопрос, без которого самостоятельно пытаться что-то починить не имеет смысла — для чего служит генератор.

Первым делом, задача генератора заключается в обеспечении энергией всего электрозависимого оборудования.

Ошибка многих заключается в том, что питание оборудования осуществляет аккумуляторная батарея. АКБ нужна для поддержания работоспособности устройств при выключенном двигателе. За счет него работает аудиосистема, сигнализация и пр.

Когда двигатель включается в работу за счет помощи аккумулятора, все бразды правления переходят к генератору. Он отныне отвечает за работу аудиосистемы, кондиционера, стеклоподъемников и пр.

Вторая, но не менее важная задача аккумулятора, заключается в подзарядке АКБ. Происходит это тогда, когда двигатель работает. Если бы не генератор, батарея не смогла бы длительное время обеспечивать питание всех потребителей, пришлось бы регулярно ее заряжать в гараже.

Схема

Технические параметры

Если старый генератор выходит из строя, многие автомобилисты задаются вопросами относительно того, какой генератор им теперь лучше поставить вместо старого.

Ничего выдумывать здесь не нужно. Самое правильное решение — это установить такой же генератор, как стоял ранее, либо более мощный.

Сегодня для ВАЗ 2110 предусмотрено применение трех видов питающих устройств:

  1. Катек 5102.3771. Генератор выдает мощность на 80 Ампер, а его напряжение составляет примерно 14В.
  2. Катек 94.3701. Это устройство с теми же параметрами. Ничем серьезно не отличаются.
  3. Катек на 120 ампер. Генератор, более адаптированный под современные реалии, когда помимо стандартного электрооборудования автомобилисты устанавливают множество дополнительных устройств.

Если у вас в машине есть мощная аудиосистема, вы пользуетесь электронасосом, питающимся от авто, а также ряд других дополнительных потребителей, вместо стандартного генератора на 80 ампер рекомендуется устанавливать 120-амперник.

Если брать во внимание размеры устройств, тогда можно выделить обычные и компактные. У них есть определенная разница в конструкции. Если быть конкретными, то отличия заключаются в следующих компонентах:

  • Кронштейны;
  • Якорь;
  • Провод возбуждения;
  • Приводной шкив;
  • Количество крепежных болтов.

Но на деле это не играет особой роли. Ведь строение у всех генераторов, применяемых для ВАЗ 2110, одинаковое. Потому давайте разберемся в схеме и устройстве данного агрегата.

Элемент

Функции

Ротор

Он же якорь. Является вращающимся элементом генератора, который создает магнитное поле за счет обмотки возбуждения, расположенной на валу. Провод возбуждения получает питание от контактных колец. Они установлены на том же валу. Также тут нашлось место для приводного шкива, провода обмотки возбуждения, подшипникового узла и крыльчатки вентилятора. Последних может быть 1-2

Статор

Это неподвижный трехфазный элемент, включающий в себя три обмотки. Они обеспечивают создание переменного тока. Соединяются обмотки между собой треугольником или звездой

Корпус

Для изготовления корпуса генератора чаще всего используется легкий немагнитный сплав алюминия. Корпус выглядит как пара крышек, соединенных болтом. Передняя крышка располагается около приводного шкива, а задняя — со стороны контактных колец. Каждый соединительный болт обязательно должен быть затянут. Для разборки корпуса достаточно просто открутить крепежные болты

Крепежи

В верхнем крепежном кронштейне генератора используют два болта, а нижний кронштейн преимущественно установлен на один болт. В некоторых случаях бывает два. Переделку кронштейнов выполнять не рекомендуется, поскольку заводской выполняет важные функции. Задача кронштейнов — удерживать генератор. Рекомендуется следить за состоянием кронштейнов, поскольку они подвержены износу и поломкам

Щеточный узел

Представляет собой пару графитных щеток, пружины, которые прижимают щетки, а также щеткодержатель

Узел щеткодержателя и провода напряжения

Такая конструкция характерна для современных генераторов Катек. Потому при выходе из строя регулятора, придется выполнять замену всего узла

Выпрямительный блок

Оснащается 6 диодами, отвечает за превращение переменного тока в постоянный. Именно постоянный ток требуется для работы всего оборудования для авто. Этот элемент обеспечивает зарядку аккумуляторной батареи, помимо прочих функций

Ременной привод передачи

Привод ременной передачи позволяет увеличивать скорости, с которыми вращается коленчатый вал. Если шкив имеет небольшой диаметр, тогда клиновый ремень будет изнашиваться быстрее. Потому для малых ведомых шкивов рекомендуется использовать поликлиновый привод. Он наиболее часто встречается в современных генераторах

Внутреннее устройство

Представленное устройство актуально для всех генераторов, используемых на ВАЗ 2110, вне зависимости от их мощности — 80-120 Ампер.

Запас прочности

Если брать во внимание стандартный генератор Катек, который устанавливается на отечественные десятки, то его ресурса хватает примерно на 10 лет эксплуатации или 140 тысяч километров пробега.

Рассчитывать на указанный запас прочности устройства можно только при условии, если с ним будут обращаться должным образом.

Многие опасаются, что мощный генератор на 120 А способен негативно повлиять на состояние аккумулятора. На практике ничего подобного не происходит. Более того, установка более мощного агрегата рекомендуется, если на машину планируется ставить внушительную акустическую систему, видеооборудование.

Что выбрать?

Генераторами Катек выбор автомобилистов не ограничивается. Потому если старое устройство вышло из строя, следует подумать относительно того, кто встанет на его место.

Можно выделить несколько основных вариантов.

  1. Катек. Стандартный, достаточно надежный и весьма эффективный генератор. Выбор со стороны АвтоВАЗа в его пользу обусловлен именно этим. Плюс это отечественный производитель.
  2. Китайские изделия. Отношение автомобилистов к китайским генераторам достаточно скептическое. Этому есть объяснения. По сравнению с ними, Катек просто идеальное решение. Хотя справедливости ради отметим, что можно встретить довольно неплохие варианты китайской сборки. Но это скорее исключение, нежели правило.
  3. Импортные аналоги. Здесь в первую очередь следует обращать внимание на фирмы Bosch. Denso и Delphi. Высокое качество сборки, внушительный эксплуатационный срок, эффективная работа. Стоят они дороже российских аналогов в виде Катек, но на такое дело есть смысл потратиться немного больше.

Катек

 

Среди импортных устройств неплохими вариантами считаются:

  • Динамо — производитель Болгария;
  • Eldix — также выпускается в Болгарии;
  • БАТЭ — выпускают в городе Борисов, что в Беларуси.

Выбирая для своего автомобиля новый генератор, обращайте внимание на его технические характеристики и запас прочности. Уже потом думайте относительно производителя. Смотреть в сторону Китая не советуем, если вы делаете ремонт для себя и хотите добиться высокого качества работы.

 Загрузка ...

luxvaz.ru

Устройство и принцип работы генератора переменного тока

Генератор тока— это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.

До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.

В прошлой статье Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы  и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях .

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея— электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении  электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.

По принципу работы генераторы могут быть синхронными или асинхронными.

  1. Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок- запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.
  2. Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течении одной секунды выдерживать пятикратную токовую перегрузку.

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из  двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Блок автоматики и управления следит за работой электростанции и  при необходимости корректирует и защищает в аварийных ситуациях.

В более дешевых электростанциях происходит ручной запуск, а в более дорогих- автозапуск при помощи стартера и аккумуляторной батареи.

Более подробно об электростанциях Вы сможете узнать из нашей следующей статьи «Как выбрать электростанцию для дома или гаража».

jelektro.ru

Генератор тока. Устройство и прицип действия генератора.

Генератор тока преобразует механическую (кинетическую) энергию в электроэнергию. В энергетике пользуются только вращающимися электромашинными генераторами, основанными на возникновении электродвижущей силы (ЭДС) в проводнике, на который каким-либо образом действует изменяющееся магнитное поле. Ту часть генератора, которая предназначена для создания магнитного поля, называют индуктором, а часть, в которой индуцируется ЭДС – якорем.

Вращающуюся часть машины называют ротором, а неподвижную часть – статором. В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных) генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).

Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока. При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.

Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз

Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.

Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток

Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.

Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.

Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.

Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал

Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).

Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.

При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.

Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) [3.24]. Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.

Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы. В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).

У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.

К электромашинным генераторам относятся и электростатические генераторы, на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.

Первый магнитоэлектрический генератор изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.

Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана

Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.

Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны

Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.

Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение, принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).

Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны

Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.

Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).

www.eti.su