Что такое варистор и для чего он нужен. Варисторы: как работают, основные характеристики и параметры, схема подключения
SET 8-861-260-24-40, 8 (989) 212 27 02
Заказать обратный звонок
г.Краснодар,
ул.Симферопольская
дом 5, офис 9
Пн-Вс с 9:00 до 18:00

Корзина

Корзина пуста

Выбрать товар

Варистор - что это такое? Варисторы: принцип работы, типы и применение. Что такое варистор и для чего он нужен


Варистор - это... Что такое Варистор?

Обозначение на схеме

Вари́стор (англ. vari(able) (resi)stor — переменный резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП). В русскоязычной литературе часто применяется термин разрядник[источник не указан 288 дней] для обозначения варистора или устройства защиты от импульсных перенапряжений (УЗИП) на основе варистора.

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника — преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO, и связующего вещества (глина, жидкое стекло, лаки, смолы и др.). Далее поверхность полученного элемента металлизируют и припаивают к ней выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

,

где U и I — напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Параметры

  • Вольт-амперная характеристика
  • Классификационное напряжение, В — напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.
  • Рабочее напряжение (Operating voltage) В (для пост. тока Vdc и Vrms — для переменного) — диапазон — от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.
  • Рабочий ток (Operating Current), А — диапазон — от 0,1 мА до 1 А
  • Максимальный импульсный ток (Peak Surge Current), А
  • Поглощаемая энергия (Absorption energy), Дж
  • Коэффициент нелинейности
  • Температурные коэффициенты (статич. сопротивления, напряжения, тока) — для всех типов варисторов не превышает 0,1 % на градус

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков (Под ред. В. Г. Герасимова). Основы промышленной электроники: Учебник для вузов. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • В. Г. Колесников (главный редактор). Электроника: Энциклопедический словарь. — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2

Ссылки

dic.academic.ru

ВАРИСТОРЫ

Цель данной работы определение зависимости сопротивления варисторов от приложенного напряжения. Приборы и принадлежности: варистор, миллиамперметр, вольтметр, источник питания ВУП-2.

Краткая теория о варисторах

Варистор – это разновидность нелинейного полупроводникового резистора, сопротивление которого зависит от приложенного напряжения. Его вольтамперная характеристика носит сильно нелинейный характер. Сопротивление варистора сильно уменьшается при достижении порогового напряжения. Благодаря этому варисторы широко используются для защиты от импульсных перенапряжений. Обычно варистор включается параллельно защищаемой нагрузке, при этом он должен быть рассчитан на номинальное напряжение питания данной нагрузки.

Если пороговое напряжение на варисторе не превышено он фактически является изолятором. Если порогового значения напряжения превышено, то сопротивление варистора резко падает. При этом варистор шунтирует нагрузку защищая ее от воздействия недопустимо высокого напряжения питания.

Как правило, в качестве порогового напряжения варистора указывается напряжение, при котором через него протекает ток в 1 мА. Когда пороговое напряжение превышено через варистор может протекать очень большой ток. Если перенапряжение в защищаемой цепи будет носить длительный характер, то варистор выйдет из строя. При длительном падении сопротивления варистора в цепи возникает короткое замыкание, что должно вызвать срабатывание предохранителя.

Описание экспериментальной установки

Измерительная цепь питается от источника постоянного регулируемого напряжения ВУП-2. Ток через терморезистор измеряется микроамперметром.

Рис.1. Электрическая принципиальная схема установки

Порядок выполнения работы

  1. Собрать экспериментальную установку по рисунку 1. При выполнении, данном лабораторной работы используется лабораторный блок питания ВУП-2 (ВУП-1, ВУП-2М). Этот блок питания предназначен для питания ламповых электронных схем. На выходных клеммах блока питания ВУП-2 присутствует опасное для жизни постоянное напряжение до 350 В. Следует неукоснительно соблюдать правила техники безопасности. Все изменения в электрической схеме следует производить только при полностью обесточенной установке. Прикасаться к неизолированным токоведущим проводникам запрещается. При обесточивании установки не следует довольствоваться только отключением тумблера на передней панели блока питания. Следует извлечь штепсельную вилку блока питания из электрической розетки.
  2. Снять зависимость сопротивления варистора от приложенного напряжения. Пороговое напряжение для используемого в лабораторной работе варистора составляет 120 В. Во избежание перегрузки блока питания и выхода из строя исследуемого варистора превышать это напряжение запрещается.
  3. По результатам измерений построить вольтамперную характеристику варистора.

Практическая работа

Данная лабораторная работа посвящена варистору. В ней используется варистор на номинальное напряжение 120 В. Проще всего в продаже найти варисторы, рассчитанные на напряжение близкое к 220 В. В данном случае по соображениям безопасности использован варистор на минимальное напряжение (из тех, что удалось найти в продаже). 

Варистор закреплен на панели из оргстекла, затрудняющей случайное прикосновение к токоведущим частям.

Изменение сопротивления варистора отслеживается при помощи амперметра и вольтметра. В качестве источника высокого напряжения использован блок питания ВУП-2М, предназначенный для питания схем на электронных лампах.

Видно, что при напряжении около 100 В ток через варистор равен нулю.

Но уже при 115 В сопротивление варистора начинает снижаться.

Варистор плохо переносит длительную работу при напряжении близком к номинальному. После нескольких лабораторных работ подряд прибор явно деградировал. При этом варистор стал заметно проводить ток уже при напряжении 60-80 В. Материал предоставил Denev.

   Форум по теории

   Обсудить статью ВАРИСТОРЫ

radioskot.ru

надежная защита от скачков напряжения

Варисторы – надежное средство для подавления скачков напряжения в первичных электрических цепях. Компания Littelfuse выпускает широкую линейку этих изделий, состоящую из нескольких серий, в числе которых – лидеры отрасли по рассеиваемой энергии, индустриальные варисторы серии C-III.

Чтобы быть уверенным в надежном функционировании разрабатываемого устройства, нужно уже на ранних этапах разработки продумать подавление скачков напряжения. Это может быть комплексной задачей, потому что электронные компоненты очень чувствительны к переходным процессам. Разработчик должен определить тип угрозы, из-за которой могут возникать скачки напряжения, и то, каким стандартам должно соответствовать устройство, исходя из области его применения. Варисторы чаще всего применяются для подавления скачков напряжения в первичных цепях. Компаний-производителей варисторов на рынке немало. Рассмотрим различные типы варисторов, остановимся на их физической сущности и сравним варисторы лидера рынка защитных компонентов – компании Littelfuse – с варисторами других популярных производителей – Epcos и Fenghua.

Варистор – электронный прибор, сопротивление которого нелинейно меняется с изменением подаваемого на него напряжения, его вольт-амперная характеристика (ВАХ) схожа с ВАХ двунаправленных диодов Зенера. Варистор состоит, в основном, из оксида цинка ZNO с небольшим содержанием висмута, кобальта, магния и других элементов. Варистор из оксида металла (Metal Oxide Varistor или MOV) спекается в процессе производства в керамический полупроводник с кристаллической микроструктурой, которая позволяет рассеивать очень большие энергии, поэтому варисторы часто используются для защиты от скачков напряжения, вызванных ударами молний, связанных с переходными процессами, с индуктивными нагрузками, электростатическими разрядами в цепях переменного и постоянного тока, а также в промышленных линиях питания. Помимо этого, варисторы используются в сетях с постоянным напряжением, например, в низковольтных источниках питания или автомобильных цепях. Процесс производства варисторов позволяет придать им разнообразную форму. Однако наиболее распространенным форм-фактором варисторов является диск c радиальными выводами.

Характеристики варистора

Тело варистора представляет собой изотропную гранулярную структуру оксида цинка ZnO (рисунок 1). Гранулы отделены друг от друга, и их граница разделения имеет ВАХ, схожую с p-n-переходом в полупроводниках. Эти границы при низких напряжениях имеют очень низкую проводимость, которая нелинейно увеличивается с увеличением напряжения на варисторе.

Рис. 1. Фотография гранулярной структуры варистора, сделанная с помощью электронного микроскопа

Симметричная ВАХ показана на рисунке 2. Благодаря ей варистор отлично справляется с подавлением скачков напряжения. Когда они появляются в цепи, сопротивление варистора уменьшается во множество раз: от почти непроводящего состояния до высокопроводящего, уменьшая импульс напряжения до безопасного для цепи значения. Таким образом, потенциально опасная для элементов цепи энергия входного импульса напряжения абсорбируется варистором и защищает компоненты, чувствительные к скачкам напряжения.

Рис. 2. Симметричная ВАХ варистора

В местах соприкосновения микрогранул варистора возникает эффект проводимости. Так как количество гранул в объеме варистора очень велико, абсорбируемая варистором энергия значительно превышает энергию, которая может пройти через единичный p-n переход в диодах Зенера. В процессе прохождения тока через варистор весь проходящий заряд равномерно распределяется по всему объему. Таким образом, количество энергии, которую может абсорбировать варистор, напрямую зависит от его объема. Величина рабочего напряжения варистора и максимального тока зависят от расстояния между электродами, между которыми находятся гранулы оксида цинка. Однако есть множество других технологических моментов, которые обуславливают эти электрические параметры: технология гранулирования и спекания, влияющая на размер гранул и их площадь соприкосновения, присоединение металлических выводов, покрытие варистора, легирующие добавки. Например, диапазон рабочих температур дисковых варисторов зависит от типа покрытия диска: у варисторов с эпоксидным покрытием диапазон -55…85°С, у фенолового покрытия, встречающегося у варисторов Littelfuse серии C-III, этот диапазон расширен до 125°С. Также расширенный диапазон рабочих температур имеет большинство серий варисторов для поверхностного монтажа.

Рассмотрим подробнее принцип работы варистора.

В его корпусе между металлическими контактами находятся гранулы со средним размером d (рисунок 3).

Рис. 3. Схематическое изображение микроструктуры металл-оксидного варистора

Токопроводящие гранулы оксида цинка со средним размером гранулы d разделены между собой межгранулярными границами.

При разработке варистора для заданного номинального напряжения Vn основным параметром является количество гранул n, заключенных между контактами, что, в свою очередь, влияет на размер варистора. На практике его материал характеризуется градиентом напряжения В/мм, измеренном в коллинеарном направлении с нормалью к плоскости варистора. Для контроля состава и условий производства градиент должен быть постоянным. Так как физические размеры варистора имеют определенные пределы, то сочетание примесей в составе прибора позволяет достичь заданного размера гранул и нужного результата.

Фундаментальным свойством ZnO-варистора является его практически постоянное падение напряжения на границах гранул во всем объеме. Наблюдения показывают, что вне зависимости от вида варистора, падение напряжения на границе соприкосновения гранул всегда составляет 2…3 В. Падение напряжения на границах гранул не зависит и от размера самих гранул. Таким образом, если опустить разные способы производства и легирования оксида цинка, то напряжение варистора будет зависеть от его толщины и размера гранул. Эта зависимость может быть легко выражена в следующем виде (формула 1):

, (1)

где d – средний размер гранулы.

Учитывая

,

получаем данные, представленные в таблице 1.

Таблица 1. Зависимость структурных параметров варистора от напряжения

Напряжение варистора Vn, В~ Средний размергранулы, мкм n Градиент, В/ммпри 1 мА Толщина варистора, мм
150 20 75 150 1,5
25 80 12 39 1

Напряжение варистора Vn – это напряжение на вольт-амперной характеристике, где происходит переход из слабопроводящего состояния на линейном участке графика в нелинейный режим высокопроводящего состояния. По общей договоренности для стандартизации измерений был выбран ток 1 мА.

Несмотря на то, что варисторы могут за несколько микросекунд абсорбировать большое количество энергии, они не могут продолжительно находиться в проводящем состоянии. Поэтому в некоторых случаях, когда, например, напряжение в сети на продолжительное время увеличивается до уровня срабатывания, варистор начинается сильно греться. Его перегрев может закончиться возгоранием (рисунок 4). Для защиты от этого стали применяться термисторы. Варистор со встроенным термистором защищен от перегрева, что продлевает его срок службы и защищает устройство от возможного возгорания.

Рис. 4. Результат увеличения напряжения в сети на продолжительное время

Проведем сравнительный анализ наиболее популярных варисторов производства компаний Littelfuse, Epcos и Fenghua с рабочим напряжением 250 и 275 В (АС rms) и диаметром диска 10, 14 и 20 мм.

Как видно из таблицы 2, рассеиваемая варистором энергия зависит не только от его размеров, но и от технологии производства и материалов, которые использованы для выпуска серии. Заметим, что серия индустриального класса С-III производства компании Littelfuse вышла на первое место, серия UltraMOV тоже показала очень высокие характеристики, оказавшись на уровне конкурентов – серии Advanced производства Epcos. Также можно отметить, что варисторы C-III при меньшем габарите (D = 14 мм) имеют большую энергию рассеивания, чем стандартные серии конкурентов, имеющие большие размеры (D = 20 мм), а разница в рассеиваемой энергии между качественными варисторами в корпусе D = 20 мм и стандартными варисторами в корпусе D = 10 мм может отличаться на порядок.

Таблица 2. Сравнительный анализ наиболее популярных варисторов производства компаний Littelfuse, Epcos и Fenghua

Наименование Производитель Серия D, мм VRMS, В Imax (8/20 мкс), А Wmax (2 мс), Дж
V275LA40CP Littelfuse C-III 20 275 10000 320
V250LA40CP Littelfuse C-III 20 250 10000 300
B72220S2271K101, S20K275E2 Epcos AdvanceD 20 275 10000 215
B72220S2251K101, S20K250E2 Epcos AdvanceD 20 250 10000 195
V20E275P Littelfuse UltraMOV® 20 275 6500 190
V20E250P Littelfuse UltraMOV® 20 250 6500 170
B72220S0271K101, S20K275 Epcos StandarD 20 275 8000 151
V275LA20CP Littelfuse C-III 14 275 6500 145
FNR-20K431 Fenghua General 20 275 6500 140
B72220S0251K101, S20K250 Epcos StandarD 20 250 8000 140
V250LA20CP Littelfuse C-III 14 250 6500 135
FNR-20K391 Fenghua General 20 250 6500 130
B72214S2271K101, S14K275E2 Epcos AdvanceD 14 275 6000 110
V14E275P Littelfuse UltraMOV® 14 275 4500 110
B72214S2251K101, S14K250E2 Epcos AdvanceD 14 250 6000 100
V14E250P Littelfuse UltraMOV® 14 250 4500 100
FNR-14K431 Fenghua General 14 275 4500 75
B72214S0271K101, S14K275 Epcos StandarD 14 275 4500 71
FNR-14K391 Fenghua General 14 250 4500 70
V275LA10CP Littelfuse C-III 10 275 3500 70
B72214S0251K101, S14K250 Epcos StandarD 14 250 4500 65
V250LA10CP Littelfuse C-III 10 250 3500 60
B72210S2271K101, S10K275E2 Epcos AdvanceD 10 275 3500 55
V10E275P Littelfuse UltraMOV® 10 275 2500 55
B72210S2251K101, S10K250E2 Epcos AdvanceD 10 250 3500 50
V10E250P Littelfuse UltraMOV® 10 250 2500 50
FNR-10K431 Fenghua General 10 275 2500 45
B72210S0271K101, S10K275 Epcos StandarD 10 275 2500 43
FNR-10K391 Fenghua General 10 250 2500 40
B72210S0251K101, S10K250 Epcos StandarD 10 250 2500 38

Обзор варисторов производства компании Littelfuse c разбивкой на серии и области применения представлен в таблице 3.

Таблица 3. Области применения варисторов Littelfuse

Сегмент Типовое применение и примеры Серия Технология SMD-монтаж
Низковольтное оборудование, одноплатные устройства Наладонные и портативные приборы, контроллеры, измерительное оборудование, компьютеры, дистанционные датчики, порты ввода/вывода и интерфейсы, медицинское оборудование СН MOV +
MA, ZA, RA, UltraMOV, CIII MOV
ML, MLE, MLN, MHS MLV +
Электросети, сетевые фильтры Источники бесперебойного питания, измерители мощности, источники питания переменного напряжения, LED-драйверы, блоки питания, промышленные источники питания, автоматы, сетевые фильтры, бытовая электроника, управление питанием TMOV, UltraMOV, CIII, LA, HA, HB, HG, HF, DHB, TMOV34S, RA MOV
SM20, SM7, CH MOV +
Автомобильная электроника ABS, шины данных, контроллеры электродвигателей, сервоприводы, подушки безопасности, управление зеркалами, стеклоподъемниками, щетками SM7, CH MOV
ZA, LV UltraMOV MOV
AUML, ML, MLE, MLN, MHS MLV +
Телекоммуникационное оборудование Сотовые и DECT-телефоны, роутеры, модемы, сетевые карты, защита абонентского оборудования, T1/E1/ISDN, защита шин данных SM7, CH MOV
ZA, LV UltraMOV MOV
SM20, SM7, ML, MLE, MLN, MHS MLV +
Мощное индустриальное оборудование Силовые реле, соленоиды, драйверы электродвигателей, источники питания, роботы, большие двигатели/насосы/компрессоры DA/DB, BA/BB, CA, HA, HB, HC, HG, HF, DHB, TMOV34S, CIII, UltraMOV MOV

Литература

  1. http://www.littelfuse.com/.
  2. Electronics Circuit Protection Product Selection Guide.
  3. http://www.littelfuse.com/~/media/electronics/product_catalogs/littelfuse_product_selection_guide.pdf.pdf.
  4. Metal-Oxide Varistors (MOVs).
  5. http://www.littelfuse.com/~/media/electronics/product_catalogs/littelfuse_varistor_catalog.pdf.pdf.

Получение технической информации, заказ образцов, заказ и доставка.

Наши информационные каналы

Рубрика: примеры применений Метки: C-III, EPCOS, Fenghua, Littelfuse, варистор, варисторы, варисторы C-III, варисторы серии C-III, защита от скачков напряжения, НЭ, серия C-III

О компании Littelfuse

Компания Littelfuse является ведущим мировым производителем компонентов и устройств для защиты электрических и электронных цепей любого рода. Поставляемые компанией компоненты и системы, во многих случаях являются жизненно важными для устройств в практически всех отраслях и видах продукции: от бытовой электроники и автомобилей до электроэнергетики. Littelfuse предлагает наиболее широкий и полный спектр компонентов и систем защиты цепей на рынке электронных компонентов. Компания расширяет и н ...читать далее

www.compel.ru

что это такое? Варисторы: принцип работы, типы и применение

Варистор – что это такое, где он применяется, и зачем необходим? Данный элемент электронных схем довольно редко используется, поэтому название его не на слуху. Давайте исправим это и ознакомимся с его работой и принципом устройства.

Общая информация

Электроустановки обладают изоляцией, которая соответствует номинальному напряжению. Реальный показатель может отличаться от теоретического значения. Но работа будет обеспечиваться в случае, если отклонение невелико и находится в рамках разрешенного диапазона. И всё же электрооборудование часто выходит из строя из-за импульса напряжения. Так называют резкое изменение характеристики в определённой точке, когда следует восстановление до первоначального уровня за небольшой промежуток времени. Импульсы могут быть грозовые и коммутационные. Чтобы защититься от таких перепадов, используют различные устройства, среди которых вентильные разрядники, фильтры, цепочки и много других разработок. Но наиболее успешным оказался варистор. Что это такое? Так называют эффективное и дешевое средство защиты от импульсов, которое базируется на нелинейных полупроводниковых резисторах. Принцип их действия прост: варистор включается параллельно к защищаемому оборудованию и в нормальном режиме на него влияет рабочее напряжение защищаемого устройства. Когда наступает экстренная ситуация, то он начинает функционировать как изолятор. Их отличительной чертой является симметричная и хорошо выраженная нелинейная вольт-амперная характеристика.

Действия варистора

Когда возникает импульс, то устройство в силу нелинейности характеристики быстро уменьшает свое сопротивление (до долей Ома) и шунтирует нагрузку. Таким образом она защищается, а поглощенная энергия рассеивается в виде тепла. Во время таких процессов в варисторах может протекать ток величиной в несколько тысяч ампер. Учитывая практически безынерционность устройства, после того как импульс погашен, он опять становится прибором с большим сопротивлением. Таким образом, в нормальных условиях он не влияет на работу электрооборудования. Но есть будут импульсы опасного напряжения, то будьте уверены – они срежутся. Это обеспечивает сохранность даже слабой изоляции.

Самые популярные образцы

Говоря про варистор, что это такое, нельзя обойти стороной материалы, из которых он изготавливается. Наибольшее распространение получили те устройства, которые сделаны с использованием оксида цинка. Это обусловлено несколькими причинами:

  1. Простота изготовления.
  2. Цинк имеет хорошую способность к поглощению высокоэнергетических импульсов напряжения.

Создаются они по «керамической» технологии, которая включает в себя прессование, обжиг, нанесение электродов и электроизоляции, пайку выводов и монтаж влагозащитных покрытий. Благодаря простоте изготовления они могут создаваться даже под индивидуальные заказы.

Маркировка

Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR – это название типа, в данном случае перед нами металлооксидный варистор. 06 – он имеет диаметр в 6 миллиметров. D – перед нами дисковый варистор. 400 – напряжение срабатывания. K – эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.

Изображение

Если мы не хотим, чтобы техника сгорела, то нам важен варистор. Обозначение на схеме выглядит как у обычного резистора, только есть ещё косая линия и буква U. Она говорит о том, что рабочие характеристики напрямую зависят от величины напряжения. Но может и по-другому выглядеть варистор. Обозначение на схеме для него задаётся как RU, после чего указываются цифры. Число является порядковым номером, а вот буквы обозначают название устройства: резистор-варистор. Также могут быть информационные обозначения. Это можно отнести к популярной отечественной продукции, которая изготавливается на заводе «Прогресс» в Ухте. Их варистор на схеме может быть промаркирован буквами от А до Г.

Проверка работоспособности элемента

Вот у нас в руках есть варистор. Как проверить его работоспособность? Начинать всегда необходимо с внешнего осмотра устройства. Необходимо внимательно поискать на корпусе сколы, трещины, почернения или следы нагара. Если есть внешние дефекты, то уже одно это говорит о том, что элемент необходимо заменить или не использовать вообще. Если при осмотре не было выявлено проблем, то можно приступать к проверке мультиметром. В этом случае тестер необходимо переключить на режим замера максимального сопротивления. Вот самый простой способ узнать, рабочий ли варистор. Как проверить его работоспособность, мы уже рассмотрели, теперь давайте обсудим, как же подбирать необходимые элементы.

Оптимальный рабочий режим

В силу высокой линейности устройства найти наилучшие параметры для схемы – задача не из легких. Для этого применяются довольно сложные и многочисленные расчеты. Большую важность в этом случае играет рабочий ток, значение которого должно быть минимальным и не вести к перегреву устройства. Но здесь приходится балансировать. Ведь если использовать слишком малой рабочий ток, то увеличится ограничение напряжения, и устройство не будет выполнять свою основную функцию. В качестве "ленивого" варианта можно взять на вооружение такой принцип: рабочее постоянное напряжение не должно превышать 0,85 от порога варистора. Но этот простой подход на практике является малоприменимым. Ведь работа варистора специфическая, и желаемый результат, а также рамки ограничения должны подбираться под каждый конкретный случай.

Выбор и установка

Про то, что варисторы должны размещаться параллельно защищаемому электрооборудованию, мы уже говорили. Наиболее предпочтительным местом монтажа варисторов считается место после коммутационного аппарата (если смотреть со стороны нагрузки, которую необходимо защитить). В качестве примера уже готового решения можно привести продукцию ранее упомянутого завода «Прогресс» с названием «Импульс-1». Такой варистор предназначен для того, чтобы его закрепляли на электрощите. Благодаря ему можно просто реализовать схему защиты трехфазных нагрузок с соединением «звезда» или «треугольник». Или в качестве альтернативы выбрать защиту 3 электроустановок, которые питаются от трехфазной сети.

Параметры

Говоря про варистор, что это такое, нельзя обойти вниманием его характеристики, которые важны в работе:

  1. Классификационное напряжение. Так называют величину, при которой ток в 1 мА протекает через устройство.
  2. Максимальное допустимое переменное напряжение. Под этим понимается величина, при которой варистор срабатывает и начинает выполнять возложенные на него защитные функции.
  3. Максимальное допустимое постоянное напряжение. То же, что и с предыдущим вариантом. Но в данном случае этот параметр касается работы с постоянным током.
  4. Максимальное напряжение ограничения. Это величина, при которой варистор может работать без повреждений. Как правило, указывается отдельно для разных значений тока. Если превысить эту величину, то варистор треснет надвое или даже разлетится на куски.
  5. Максимальная поглощаемая энергия. Указывается в джоулях. Является величиной максимальной энергии импульса, которая может быть рассеяна варистором в виде тепла без угрозы разрушить само устройство.
  6. Время срабатывания. Это промежуток, за который устройство переходит из одного состояния в другое, если было превышено максимальное допустимое напряжение. Как правило, измеряется в десятках наносекунд.
  7. Допустимое отклонение. Это величина, изменение на которую квалификационного напряжения варистора считается нормой. Всегда указывается в процентах. Как можно было понять из статьи ранее, данный параметр обозначается буквой в конце маркировки.

Использование

Давайте рассмотрим, к примеру, сеть на 220 Вольт. Для неё оптимальными будут устройства, у которых напряжение срабатывания находится в диапазоне 275-420В (но здесь есть некоторые технические нюансы, которые мы трогать не будем). В качестве сетевого фильтра используется три варистора. Они блокируют проникновение импульсов по цепи фазы и нуля. А почему их три? Бывает иногда такое, что в новостях проскакивают сообщения о проблемах, вследствие которых электроники лишились тысячи людей. Такое бывает, когда вместо нуля и фазы по проводам идёт только последняя. Для аппаратуры это почти всегда верная смерть. Но наличие варистора на нуле позволяет успешно защищать от таких ситуаций. В качестве показательного примера можно привести мобильные телефоны. Чтобы они не перегорели, используют миниатюрные многослойные варисторы. Кроме этого, их можно встретить в телекоммуникационном оборудовании и автомобильной электронике.

загрузка...

aikido-mariel.ru

Варисторы как средство защиты радиоэлектронной аппаратуры

Документация

Главная  Справочник  Документация

"Документация" - техническая информация по применению электронных компонентов, особенностях построения различных радиотехнических и электронных схем, а также документация по особенностям работы с инженерным программным обеспечением и нормативные документы (ГОСТ).

Оглавление

Надежность работы радиоэлектронной аппаратуры во многом определяется качеством питающих электрических сетей, в которых могут иметь место перенапряжения длительностью от сотен миллисекунд до нескольких секунд, провалы напряжения длительностью до десятков миллисекунд, пропадания (отсутствие напряжения более одного периода) и так далее. На рис. 1 показаны наиболее часто встречающиеся неполадки в электросети и их процентное соотношение.

Особенно опасны высоковольтные импульсы амплитудой до нескольких киловольт и длительностью от десятков наносекунд до сотен микросекунд. Именно они могут приводить к серьезным сбоям электронной аппаратуры и выходу ее из строя, а также быть причиной пробоя изоляции проводов и даже их возгорания.

Импульсы напряжения, которые можно отнести к внешним сетевым помехам (рис. 2), возникают в различных цепях аппаратуры, в первую очередь, в проводах питания.

Во-первых, они могут наводиться электромагнитными импульсами искусственного происхождения от передающих радиостанций, высоковольтных линий электропередач, сетей электрифицированных железных дорог, электросварочных аппаратов.

Идентифицировать и систематизировать причины таких помех практически невозможно. Однако для бытовых электрических сетей напряжением 220 В приняты следующие ориентировочные параметры внешних импульсных напряжений:

  • амплитуда — до 6 кВ;
  • частота — 0,05...5 МГц;
  • длительность — 0,1...100 мкс.

Во-вторых, они могут быть естественного происхождения и наводиться мощными грозовыми разрядами.

Рис. 2

В-третьих, они могут создаваться статическим напряжением, разряд которого достигает 25 кВ. Высоковольтные импульсы способны возникать и в самой аппаратуре при ее функционировании в результате переходных процессов, при срабатывании электромагнитов, размыкании контактов реле, коммутации реактивных нагрузок и так далее. Наибольшую угрозу представляют импульсы, возникающие при отключении индуктивной нагрузки.

По указанным причинам радиоэлектронная аппаратура должна быть защищена от высоковольтных импульсных помех. Чтобы аппаратура могла быть сертифицирована, она должна пройти проверку на устойчивость к воздействию импульсных помех. Например, ГОСТ Р 51317.4.4-99 (МЭК 61000-4-4-95) распространяется на электротехнические, электронные и радиоэлектронные изделия и устанавливает требования и методы их испытаний на устойчивость к наносекундным импульсным помехам (НИП).

В настоящее время для защиты радиоэлектронной аппаратуры от внешних импульсных воздействий применяются различные виды экранировки, RC- и LC-фильтры, газоразрядные приборы (разрядники) и полупроводниковые ограничители напряжения (ПОН). К сожалению, разрядники не обладают необходимым быстродействием, а быстродействующие ПОН, с высокой нелинейностью вольтамперной характеристики (ВАХ) не способны рассеивать большую мощность из-за малого объема p-n-перехода. Это обуславливает резкое уменьшение допустимого тока в импульсе, протекающем через прибор.

В последнее время наиболее эффективным средством защиты аппаратуры от любых импульсных напряжений признаны оксидно-цинковые варисторы. Варисторы [англ. varistor, от vari (able) - переменный и (resi) stor - резистор] - это нелинейные резисторы, сопротивление которых зависит от приложенного напряжения. Отличительной чертой варистора является двухсторонняя симметричная и резко выраженная нелинейная ВАХ (рис. 3).

Рис. 3

Электрические характеристики варистора определяются большим сопротивлением утечки и емкостью, которая незначительно изменяется под воздействием напряжения и температуры.

При больших напряжениях на варисторе, и соответственно, больших токах, проходящих через него, плотность тока в точечных контактах оказывается также большой. Разогрев точечных контактов приводит к уменьшению их сопротивления и, как следствие, к нелинейности ВАХ. Малые объемы активных областей обеспечивают малую инерционность тепловых процессов, что определяет их высокое быстродействие. Наряду с этим варисторы способны хорошо поглощать высокоэнергетические импульсы напряжения, так как тепловая энергия рассеивается не на отдельных зернах полупроводника, а на всем его объеме.

Особенностью ВАХ варистора является наличие участка малых токов (условно от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов, который определяет защитные свойства и, в частности, напряжение ограничения. В области малых токов ВАХ описывается выражением:

I=AUβ, где I - ток, A; U - напряжение, В; А — коэффициент, значение которого зависит от типа варистора и от температуры; β — коэффициент нелинейности, который характеризует крутизну ВАХ и определяется отношением статического сопротивления варистора (R = U/I) к дифференциальному (r = dU/dI) в определенной точке:

β=R/r = U/l·dl/dU.

Экспериментально коэффициент нелинейности можно оценить по формуле:

β= lgI2-lgI1/lgU2-lgU1 = lgI2/I1/lgU2/U1.

Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, поэтому:

β=1/lgU2/U1.

Для варисторов на основе оксида цинка коэффициент нелинейности обычно составляет 20...60. Варисторы имеют достаточно большую емкость (100...50000 пф) в рабочем режиме (когда нет импульсов напряжения). При воздействии импульса их емкость падает практически до нуля.

Одной из важнейших характеристик варистора является классификационное напряжение — Uкл — напряжение на варисторе при токе, равном 1 мА. Иногда приводится коэффициент защиты варистора — отношение напряжения на варисторе при токе 100 А к напряжению при токе 1 мА (то есть к классификационному напряжению). Он характеризует способность варистора ограничивать импульсы перенапряжения и для варисторов на основе оксида цинка находится в пределах 1,4...1,6. Таким образом, при росте напряжения в 1,4...1,6 раза ток через них возрастает в 100 000 раз.

Важной характеристикой варистора является допустимая мощность рассеивания, определяемая его геометрическими размерами и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, играющие роль радиатора.

При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения (рис. 4).

Выбор типа варистора осуществляется на основе анализа его работы в двух режимах: в рабочем и импульсном. Рабочий режим определяется классификационным напряжением Uкл, а импульсный — рассеиваемой мощностью. Для ориентировочных расчетов рекомендуется, чтобы рабочее постоянное напряжение на варисторе не превышало 0,85 Uкл, а при переменном токе действующее значение рабочего напряжения не превышало 0,6 Uкл.

В импульсном режиме через варистор протекает большой ток, вследствие чего необходимо опасаться выхода его из строя из-за перегрева. С этой целью необходимо использовать варисторы с рассеиваемой мощностью большей, чем расчетная.

Для расчета варисторов, защищающих те или иные цепи от грозового разряда, иногда приводят сведения о напряжении на варисторе при воздействии стандартного грозового импульса. На рис. 5 показана форма этого импульса, который часто называют «импульсом 8/20 мкс».

Очевидно, что варисторы могут работать и при последовательном включении. При этом в них протекает одинаковый ток, а общее напряжение делится пропорционально сопротивлениям (в первом приближении - классификационным напряжениям), в той же пропорции разделится поглощаемая энергия. Сложнее обеспечить параллельную работу варисторов - необходимо строгое совпадение их ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения — т.е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом подбором варисторов обеспечивают совпадение ВАХ столбов, которые собираются в блоки с нужными параметрами. Варисторы изготавливаются в обычном исполнении (дисковые, прямоугольные), в виде блоков различной формы и в виде чипов, что позволяет существенно экономить место на печатной плате (рис. 6).

Отечественные предприятия выпускают варисторы для различных сфер применения, это серии СН, ВР, МЧВН/ВС, МОВН/ВС и другие.

Из зарубежных производителей варисторов большую номенклатуру выпускает компания EPCOS. Ее приборы имеют следующую систему обозначений:

Чип и прямоугольные варисторы

SIOV- CN 1210 M 4 G

Варистор_________________________|Тип варистора(CN,CU,SR)_______________|Размер__________________________________|Точность: K-10%, M-20%_______________________|Классификационное напряжение__________________|Тип упаковки_____________________________________|

Дисковые варисторы

SIOV S 14 K 250 G5 S6

Варистор________________________|Тип варистора(S,B25 и др.)___________|Диаметр варисторного диска_____________|Точность: K-10%, M-20%__________________|Классификационное напряжение______________|Тип упаковки_________________________________|Тип формовки выводов___________________________|

Другие зарубежные компании-производители часто используют следующую систему обозначений выпускаемых варисторов:

DNR 0,5 D 181 M R S

Производитель________________________________________________|Диаметр в мм, может быть 0,5;0,7;10;14;20______________________________|Дисковый варистор____________________________________________________|Классификационное напряж. (расшиф."18" и "0"= 180 В)_______________________|Точность:J=5%, K-10%, M-20%________________________________________________|Упаковка(R-катушка, В-россыпь)________________________________________________|Выводы (S-прямые, К-формованные)______________________________________________|

Рис. 6

Таблица 1

Типы варисторовПараметры Чип Дисковые Автомобильные
CN CU S SR CN-AUTO SU-AUTO S-AUTO SR-AUTO
Импульсный ток (8/20 мкс), кА 1,2 10 1 2
Поглощаемая энергия, Дж 23 410 12 25 100
Средняя рассеиваемая мощность, Вт 0,25 1,0 0,03 0,2
Время срабатывания, нс
Рабочая температура,°С -55..125 -40..85 -40..+85 -55..125 -40..85 -55..125 -40..85
Типоразмер 0603..2200 3225; 032 SO5..S2O 1210; 2220 0805..2220 - S07..S20 1210; 1812; 2200

В табл. 1, 2 приведены параметры оксидно-цинковых варисторов, выпускаемых компанией EPCOS.

Рис. 7

Таблица 2

Типы варисторовПараметры Для тяжелых условий Блоки Комбинированные
В25; ВЗО; 40; LS40 В6О В80 PD80 Е32 SHCV-SR1, SR2
Импульсный ток (8/20 мкс), кА 40 70 100 100 65 1
Поглощаемая энергия, Дж 1200 3000 6000 6000 - 12
Средняя рассеиваемая мощность, Вт 1,4 1,6 2,0 2,0 - 0,03
Время срабатывания, нс -
Рабочая температура °С -40...85 -40...85 -40...85 -40...85 -25...60 -40...85

В заключение следует отметить, что для эффективной защиты аппаратуры от воздействия различных сетевых помех необходимо использовать сетевые фильтры с многоступенчатой защитой. Например, в сетевом фильтре «АРС PowerManager» (рис. 7) массивные стержневые индукторы 1 обеспечивают фильтрацию электромагнитных помех, оксидно-цинковые варисторы 2 обеспечивают общий и нормальный режимы защиты от высоковольтных импульсов, а конденсаторы 3 фильтруют радиочастотные помехи и выравнивают слабые и средние колебания напряжения.

Дата публикации: 08.10.2003

Оглавление

Мнения читателей
  • re / 16.09.2017 - 16:49[сеня / 10.08.2011 - 07:11 каким варистором можно защитить холодильник . предположительно перепад напряжения от 220 до 380 вольт. спасибо что потратили время] '20D 511k' или '20D 561k'
  • александр-витебск / 15.06.2017 - 22:00СПАСИБО
  • леонид / 22.09.2015 - 14:12в этл сгорел варистор с обозначением по прилагаемой схеме 4в где найти его параметры
  • ден / 27.02.2015 - 23:48Чем заменить 10d471k бп
  • в / 06.01.2015 - 14:03на сварочном аппарате можно поставить варистор взамен термистра
  • Не понял / 08.11.2012 - 17:54У меня в БП взорвались два варистора, на одном из них можно разглядеть обозначение: @V07K UEI 150. Что это значит? Стоят они в параллель конденсаторам фильтра после моста, кондеры на 200в каждый. Не могут же они быть на 15 вольт.
  • Вован / 16.07.2012 - 09:20Для ууу: написано - "...это нелинейные резисторы, сопротивление которых зависит от приложенного напряжения." Не путайте людей. никакой плазмы и механики там нет. Для Евгений: "Таким образом, при росте напряжения в 1,4...1,6 раза ток через них возрастает в 100 000 раз." те всплеск напряжения будет минимум до Uкл + еще немного в зависимости от схемы до него. Например до тока сжигания предохранителя по рис. 3, а если ток неограничен, то будет феерверк (На индуктивности просто напряжение самоиндукции понизится). Сейчас читал статью, там вместо варистора используют супрессор. Вроде его эквивалент только посовременней. Я в кнопке от дрели видел сгоревший стабилитрон. Недооценили мощность ЭДС самоиндукции при проектировании. Запаял туда 6 стабилитронов телевизионных на 125 В по 1 Вт.(2 столбика встречно по 3 шт. в столбике последовательно), правда после замены кнопки.
  • Lena / 16.06.2012 - 22:49I'm not wtorhy to be in the same forum. ROTFL
  • ренат / 09.06.2012 - 15:16большое спасибо за инфу. хотелось бы конечно прочитать побольше про влияние индуктивных нагрузок на работу варистора
  • радикал / 17.05.2012 - 09:10Статья очень понятная,полезная и нужная!А для таких дебилов,как "никэнэйм",тупых и ограниченых,никакие статьи не помогут!Он-эмбрион,обученый матам.Модераторам надо это учесть и не засорять РУССКИЙ язык.Спасибо.
  • ууу / 06.04.2012 - 11:32И еще не определен срок службы варисторов. Если тепловое расширение устанавливает контакт, то по идее тепловое расширение также разрушает поверхность контакта. Для первоначального локального прогрева по идее нужен разряд. А он в свою очередь получается за счет плазмы. Плазма получается из материалов электродов. Соответственно каждое срабатывание защиты постепенно уничтожает сам варистор. Нигде не смог найти подобную информацию. Передирают друг у друга одно и тоже.
  • чайник / 10.03.2012 - 11:06я, прочитав эту статью, что - то не очень понял принцип и работу варистора, но мне очень понравилось, ведь это такая наука! я то сам - начинающий специалист в этом деле, но мне интересно всё, что с этим связано. завтра, короче, у препода спрошу про работу и эффективность. ну и прочее. а так спасибо! интересно! :-) :) 10.03.2012.15:05.
  • сеня / 10.08.2011 - 07:11каким варистором можно защитить холодильник . предположительно перепад напряжения от 220 до 380 вольт. спасибо что потратили время
  • Василь / 03.07.2011 - 17:33Спасибо за нужную инфу !
  • Анатолий / 31.03.2011 - 06:37В магнето сгорел варистор 7D431K На какое он напряжение?
  • Геша / 10.02.2011 - 05:32Статья - что надо.
  • Вовка / 26.11.2010 - 17:50Жаль про расшифровку других марок нету
  • 12val12 / 19.11.2010 - 20:16Очепятка "Классификационное напр(расшиф."18" и "0"= 180В)_______|" нужно "18" и "1" =180 В
  • Евгений / 30.08.2010 - 07:14Спасибо!!! полезная информация, но мне не ясно, гашения импульса происходит до ном. U ???????
  • Владимир / 26.08.2010 - 09:41Внатуре ребята спасибо,все клево написано,я сразу въехал в суть происходящего !!!
1 2  Вперед

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Варистор. Свойства, применение и характеристики варистора.

Варисторы – полупроводниковые резисторы с симметричной и резко выраженной нелинейной вольт-амперной харктеристикой. За счет этого варисторы позволяют просто и эффективно решать задачи защиты различных устройств от импульсных напряжений.

Основное свойство которых заключается в способности значительно изменять свое электрическое сопротивление при изменении подаваемого на него напряжения. Варисторы включаются параллельно защи щаемому оборудованию (реле), т.е. при нормальной эксплуатации он находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме (при отсутствии импульсных напряжений) ток через варистор пренебрежимо мал, и поэтому варистор в этих условиях представляет собой изолятор.

При возникновении импульса напряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление до долей Ома и шунтирует нагрузку, защищая ее, и рассеивая поглащенную энергию в виде тепла. В этом случае через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер.

При неизменном значении напряжения, приложенного к варистору, изменение полярности не приводит к изменению протекающего тока, т.е. вольт-амперная характеристика варистора – симметричная. Варисторы практически безинерционны, вслед за увеличением напряженности электрического поля у них сразу же уменьшается сопротивление.

Варисторы типа ВР-1 негерметизированные неизолированные предназначены для защиты элементов и узлов аппаратуры от перенапряжений в электрических цепях постоянного, переменного и импульсного тока.

Варисторы типа ВР-2 негерметизированные неизолированные предназначены для стабилизации напряжения и защиты элементов и узлов аппаратуры от перенапряжений в электрических цепях постоянного, переменного и импульсного тока.

Варисторы серии СН также предназначены для защиты от перенапряжений в электрических цепях постоянного, переменного и импульсного тока.

Одной из характеристик варистора является классификационное напряжение (Uкл) – это напряжение на варисторе при определенном токе. Как правило, изготовители варисторов в качестве классификационного напряжения указывют напряжение на варисторе при токе 1мА.

Важной характеристикой варистора является допускаемая мощность рассеивания – она характеризует возможность рассеивать поглащаемую электрическую энергию в виде тепла. Этот показатель в основном определяется геометрическими размерами варистора и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, которые играют роль своеобразного радиатора.

Варисторы могут работать при последовательном включении – при этом в них протекает одинаковый ток, общее напряжение разделится пропорцирнально сопротивлениям ( в первом приближении – пропорционально классифицированным напряжениям), в этих же пропорциях разделится поглащаемая энергия. Сложнее обеспечить параллельную работу варисторов – необходимо строгое совпадение ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения – т.е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом путем подбора варисторов обеспечивают совпадение ВАХ столбов варисторов. Так поступают при создании высоковольтных, мощных ограничителей перенапряжений (ОПН)

www.eti.su

Как работают варисторы? Характеристики, параметры, схемы подключения

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Как работает варистор?

На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.

Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

На рисунке представлена стандартная схема подключения варистора.

Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность. Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

Преимущества и недостатки варисторов

Основными преимуществами нелинейного резистора является:

·         возможность работы под значительными нагрузками, а также на высокой частоте;

·         большой спектр применения;

·         простота использования;

·         надежность;

·         доступная стоимость.

Недостатком элемента является низкочастотный шум, создаваемый им при работе. Кроме того, его вольт-амперная характеристика в высокой степени зависит от температуры.

Варисторы: характеристики и параметры

Нелинейные резисторы, как и любые другие радиотехнические детали, обладают рядом отличительных характеристик. Основные параметры варисторов таковы:

·         классификационное номинальное напряжение. Это рабочее напряжение элемента, при котором он пропускает ток величиной 1 мА;

·         максимальное напряжение ограничения. Так называется напряжение, которое деталь способна выдержать без вреда для себя. Если этот показатель будет превышен, защитный элемент выйдет из строя;

·         максимальное постоянное напряжение. Это показатель постоянного напряжения, при достижении которого происходит резкое возрастание проходящего через деталь тока, и она выполняет стабилизирующую функцию;

·         максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

·         допустимое отклонение. Этим термином обозначается выраженное в процентах отклонение разности потенциалов от величины классификационного напряжения.

·         время срабатывания. Это время, которое требуется находящемуся в высокоомном состоянии на переход в низкоомное;

·         максимальная поглощаемая энергия. Так обозначается максимальная величина импульсной энергии, которая может быть преобразована в тепловую без вреда для варистора.

Разобравшись с принципом работы нелинейного резистора и его основными параметрами, перейдем к заключительному вопросу – как можно проверить его исправность?

Как проверить варистор?

Существует 2 способа проверки работоспособности этого элемента:

·         визуальный осмотр корпуса;

·         измерение сопротивления специальным прибором.

При внешнем осмотре корпусной части можно увидеть потемнения, трещины или следы подгорания, по которым можно сделать вывод о том, что деталь непригодна к эксплуатации. Если визуально недостатков не заметно, но исправность элемента вызывает сомнения, придется воспользоваться тестером (мультиметром) или омметром. Разберемся, как проверить варистор мультиметром. Главным критерием здесь является сопротивление детали – чем оно больше, тем лучше. Элемент с низким сопротивлением подлежит замене. Стоит отметить, что пробитый варистор, как правило, легко определить путем визуального осмотра, даже не пользуясь тестером. Кроме того, когда поврежденная радиодеталь находится в цепи, предохранитель постоянно выбивает.

Для проверки необходимо:

·         отпаять один из выводов проверяемой детали. В противном случае прозвонка, скорее всего, не даст достоверного результата, так как пойдет по другим участкам цепи;

·         поставить переключатель тестера в режим замера сопротивления на максимум;

·         прикоснуться щупами прибора к выводам проверяемой детали;

·         снять показания индикатора (шкалы).

Измерять сопротивление нужно два раза, меняя полярность подключения тестера.

Проверка мультиметром позволяет точно определить, когда варистор находится в обрыве – в ходе измерения прибор будет показывать бесконечное сопротивление.

В интернет-магазине DIP8.RU можно приобрести по доступной цене различные радиодетали и элементы высокого качества, в том числе и варисторы. Весь товар сертифицирован. По всем вопросам, касающимся характеристик деталей и оформления заказа, вы можете обратиться по телефону, указанному в разделе «Контакты».

dip8.ru